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Summary of Main Results

In Code-Division Multiple-Access (CDMA), each transmitter is assigned a fixed, dis-
tinct sitnature waveform which he uses to modulate his message in the same fashion as
in single-user communication. Then the information sent by each user can be demodu-
lated by correlating the received signal with each of the signature waveforms. This demo-
dulator, whose use is widespread in practice, is referred to as the conventional single-user
detector. As is w ll-known, when the channel output is corrupted by additive white
Gaussian noise, the conventional single-user detector minimizes the probability of eiror in
a single-user channel, i.e., in the absence of interfering users. The fact that this is no
longer true in the multiple-access channel is the raison d’étre of the area of multiuser

detection.

The performance of the conventional single-user de 2ctor is acceptable provided that
the energies of the received signals are not too dissimilar and that the signature
waveforms a‘re designed so that their crosscorrel.tions are low enough (this depends on
the desired maximum number of simultaneous users). In practice, low crosscorrelations
are usually achieved employing Spread-Spectrum Pseudonoise sequences of long periodi-
city. If the received signal energies are indeed dissimilar, i.e., some users are very weak in
comparison to others, then the conventional single-user detector is unable to recover the
messages of the weak users reliably, even if the signature waveforms have very low
crosscorrelations. This is known as the near-far problem and is the main shortcoming of
currently operational Direct-Sequence Spread-Spectrum Multiple-Access systems, and of

recently proposed systems for future mobile radio communications.

Due to the reduction of multiple-access capability and the increase of vulnerability

to hostile sources caused by the near-far problem, its solution or alleviation had been a
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target of researchers in the area for several years. Before the emergence of the solutions
based on multiuser detection developed by the Principal Investigator and his coworkers,
success had been very limited and, essentially, the only remedies available were power
control and the design of signals with even more stringent crosscorrelation properties.
Unfortunately, power control (i.e., the adaptive a,djulstment of transmitter power depend-
ing on its location and of the received powers of the other users) dictates significant
reductions in the transmitted powers of the strong users in order for the weaker users to
achieve reliable communication. Thus, power control can become self-defeating since it
actually decreases the overall multiple-access and antijamming capabilities of the system.
Furthermore, more and mors complex signature waveforms lead to rapid increases in
system cost and bandwidth, and, as we have noted, do not eliminate the near-far prob-
lem. For these reasons, it can be seen why the practical solution to the near-far problem
achieved in this project can be objectively considered a major breakthrough in the appli-

cation of signal processing techniques to Spread Spectrum communications.

The chiel reason why multiuser detection did not develop until relatively recently
was the belief sl:ared by many a worker in Spread-Spectrum that multiuser interference
is accurately modeled as a white Gaussian random process, and thus the conventional
detector is essentially optimum. It is not difficult to build an infinite population mul-
tiuser signal model which can be rigorously shown to be asymptotically Gaussian as the
individual amplitudes go to zero with the appropriate speed. Unfortunately, the number
of transmitters, signature waveforms, and power levels encountered in many practical
situations (e.g. in near-far environments) render the Gaussian approximation completely
useless. Therefore, it is useful to adopt a mnore refined viewpoint by taking the realities

of the medium into account, modeling them and exploiting them.

Prior to the start of this project, it had been shown by the Principal Investigator in
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"Minimum Probability of Error for Asynchronous Gaussian Multiple Access Channels,”
IEEE Trans. Information Theory, Jan. 1986 and "Optimum Multiuser Asymptotic
i Efficien~y," IEEE Trans. Communications, Sep. 1986, that the near-far problem is not an
inherent flaw of Direct-Sequence Spread-Spectrum systems but rather of the simple con-
ventional correlation receiver. Those works deveioped optimum multiuser receivers,
§ which consist of a front end of matched filters followed by a Viterbi-type algorithm
whose number of states is exponential in the number of users. Those receivers did not
suffer from the near-far problem. However, their implementation suffered from the bur-
g den of the exponential complexity in the number of interferers and from the necessity to

estimate the received powers of each interferer.

The first breakthrough obtained in this project was the demonstration that for

symbol-synchronous multiple-access channels a simple modification of the conventional

? ‘1%‘%"‘1

correlation receiver results in a system which does not exhibit the near-far problem, and

moreover provides optimum robustness against variations in the received strength of the

various transmissions. We called this new receiver the decorrelating detector as it corre-
lates the received signal against a linear combination of the waveforms assigned to the

active users, rather than only the waveform of the user of interest. The coefficients of

-

such a linear combination do not depend on the relative strengths of the transmitters

Pt BTy

and can be precomputed in advance. Such linear combination is such that the detector
correlates with the projection of the signature waveform of the user of interest on the
;g subspace orthogonal to the subspace spanned by the interfering waveforms. Thus, the

decorrelating detector effectively tunes out the multiuser interference.

A very pleasant surprise was to demonstrate that the decorrelating detector

achieves optimum near-far resistance, i.e. the same level of proteciion against the near-far

FaPce

problem as the optimum detector. This means that knowledge of the received energies is €




oo

Ry

-4-

not required to combat the near-far problem and that a receiver whose complexity is
similar to that of the conventional detector achieves the same degree of robustness
against imbalances in the received energies as the optimum detector, with its exponential
complexity. Another attractive property of the decorrelating detector is that its bis-
error-rate is independent of the energies of the interfering transmitters--a most desirable
feature of a strategy designed to combat the near-far problem. The signal-to-noise
reduction due to the presence of interfering waveforms depends exclusively on the
(crosscorrelations of the) signature waveforms assigned to the transmitters, and not on

their relative power levels.

The next major result was the development of the decorrelating detector ror the
asynchronous Code-Division multiple-access channel. In contrast to the solution
obtained for the synchronous channel, the asynchronous decorrelating detector is a linear
system with memory which can be implemented by transversal discrete-time filters.
Although the technical development and bit-error-rate analysis is complicated by an
order of magnitude in the asynchronous case, all the desirable features of the synchro-
nous decorrelating detector are retained: optimal near-far resistance, independence of
bit-error-rate to relative power levels, low complexity, and the fact that it is unnecessary

to know the received energies of the individual interferers at the receiver.

The main increase in complexity of the decorrelating detector with respect to that
of the conventional matched filter is the need to lock to the signal epochs of the interfer-
ing users, which can be accomplished by a bank of conventioral single-ussr synchroniza-

tion systems, or (in a promising direction for future research) by multiuser synchronizers.

We have also developed low-complexity approximations to the decorrelating detec-
tor, which do not require the iterative or off-line computation of equalizer taps and per-

form promisingly for signature waveforms such as those used in currently operational
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Direct-Sequence Spread-Spectrum systems.

Although the decorrelating detector does not require knowledge of the powers of the
interfering transmitters, we have found a class of related linear receivers which makes
effective use of this information. Consequently, we have tackled the problem of ampli-
tude estimation in a multiuser white Gaussian channel and have suggested promising
techniques that can be brought to bear un this problem. Those techniques can be
categorized as being based either on maximum-likelihood data recovery or on minimum
error-probability (i.e., Bayesian) data recovery. In each case, the most promising algo-
rithm is iterative with Gauss-Seidel iteration and the EM algorithm being proposed for

the ML and MEP approaches, respectively.

We Lave also considered nonlinear receivers for multiuser channels. Here, each
rece’ver may only know the signature sequence of one of the transmitters and treats the
sum of all the other transmitted waveforms as noise, which is neither white nor Gaus-
sian. Particular emphasis is placed on asymptotically optimum detectors for each of the
following situations: weak interferers; CDMA signature waveforms with long spreading

codes; and low background Gaussian noise level.

We have also looked at issues of computational complexity of combinatorial optimi-
zation problems arising in multiuser detection. We have shown that minimum bit-erro:-
rate demodulation of multiuser signals is an NP-complete problem in the number of
users, and hence polynomial algorithms are out of the question unless well-known prob-
lems such as the traveling-salesman and integer linear programming can also be solved in
polynomial time. Fortunately, however, minimum bit-error-rate receivers are not the
only ones that are resistant against the near-far problem. In particular, when. in lieu of
bit-error-rate, near-far resistance is the optimality criterion, then the complexity of the

optimal receiver (the d« -orrelating detector) is linear in the number of interferers.
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When Spread-Spectrum signaling is coupled to random-access protocols to provide
some degree of flow control, it is necessary to do away with the conventional collision
channel model, whereby several simultaneous transmissions result in the destruction of
all transmitted messages. Ve have proposed a new model, the multipacket channel,
which is general enough to encompass random-access channels with CDMA or with cap-
ture (which are especially relevant in near-far situations). More significantly, we have
found the maximum throughput achievable by the ALOHA algorithm in the general mul-
tipacket channel: 1) in the open-loop version of the ALCHA algorithm, i.e., with fixed
retransmission probabilities, the throughput is equal to the limit of the expected number
of successfully received packets per slot as the backlog goes to infinity, and 2) the
throughput of closed-loop ALOHA, wher. he retransmission probabilities are a function
of the channel outcomes, is equal to the maximum over v of the expected number of suc-
cessfully received packets per slot when the nurber of attempted transmissions is a Pois-

son random variable with mean v.

Our research efforts under the sponsorship of this ARO contract have also been
directed to the investigation of related issues in the CDMA optical channe. vhich is
receiving considerable attention both in commercial and military applicatiou. for fiber-
optic and free-space photonic channels. The emphasis has been in the development of
formulas for the bit-error-rate of simple single-user receivers, which can be computed
efficiently for large numbess of users. A by-product of this analysis is the determination
of the optimum detection threshold as a function of the number of users--a problem that
finds no counterpart in the conventional Caussian channel. We have achieved the first
exact analysis of a single-user optical matched filter detector in the presence of an arbi-
trary number of asynchronous transmitters. The comparison of our exact analysis with

popular approximations on user synchronism or on the distribution of the multiple-access
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interference points to severe shortcomings of those approximations, as the optimal thres-
hold is consistently underestimated, leading to an error probability which is an order of
magnitude above the one that can be obtained by a simple adjustment of the threshold

as a function of the number of active transmitters.
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Stability Propertles of Slotted Aloha with
Multipacket Reception Capability

SYLVIE GHEZ, STUDENT MEMBER, IEEE, SERGIO VERDU, MEMBER, IEEE, AND STUART C. SCHWARTZ, SENIOR MEMBER, [EEE

Abstract—The stability of the Aloha random access algorithm in an
infinite-user slotted channel with muliipacket reception capability is
considered. This channel is a generalization of the usual collision channel,
in that it allows the correct reception of one or more packets involved in a
collision. The number of successfully received packets in each slot is
modeled as 2 random variable which depends exclusively on the number
of simultaneous attempted transmissions. This general model includes as
special cases channels with capture, noise, and code division multiplexing.
It is shown by means of drift analysis that the channel backiog Markov
chain is ergodic if the packet arrival rate is less than the expected number
of packets successfully received in a collision of 7 as &1 goes to infinity.
Finally, the properties of the backlog in the nonergodicity region are
examined.

1. INTRODUCTION

NE of the main problems in random access communications

is the determination of the maximum stable throughput. In
particular, an important result is that the Aloha protocol is
unstable [1]-[3] in an infinite-user slotted collision channel
where a transmission is successful only if no other users attempt
transmissions simultaneously. Several strategies have been de-
signed to stabilize this channel, such as collision resolution
algorithms (see [4], for example) where transmissions are
deferred until the current conflict is solved, and more recently,
Aloha-type strategies using decentralized control, where the
retransmission probability is updated according to previous
channei outcomes. It has been shown [5]~{7] that the maximum
stable throughput achievable by such Aloha-type strategies with
decentralized control is e~!,

However, the collision channel model does not hold in many
important practical multiuser communication systems [8]-(21]
because simultaneous transmission of several packets does not
necessarily result in the destruction of all the transmitted
information. For instance, the capture phenomenon is common in
local area radio networks [12}-[15]; if the power of one of the
received packets is sufficiently large compared to the power of the
other packets involved in a collision, then the strongest packet can
be correctly decoded, while the other packets are lost. Other
examples are multiple-access channels where several users
transmit simultaneously in the same frequency band, and a
multiuser detector demodulates the information transmitted by all
active users (e.g., [8)~{11]). Although those systems do not
necessarily require a random access protocol, it is sometimes
usefui to exercise some flow control through such a protocol so as
to limit the maximum number of simultaneous transmitters, in
order to bound the multiuser receiver complexity and guarantee
lower bit-error rates.

Manuscript received July 23, 1987; revised January 8, 1988. Paper
recommended by Past Associate Editor A. Ephremides. This work was
supported in part by the Office of Naval Research under Contract NO0Q14-87-
&-%054 and by the Army Research Office under Contract DAALO3-87-k-

The authors are with the Department of Electrical Engineering, Princeton
University, Princeton, 1iJ 08544,
IEEE Log Number 8821359

Previous studies of some of the aforementioned systems [9],
[12]-[18} where some of the packets involved in a collision may
be correctly received have shown that the performances are
noticeably improved with respect to slotted Aloha. However. even
in those special cases, no precise stability result is available, either
because finite population networks with no buffer space were
considered, or because the Poisson approximation of channel
traffic was used for infinite population networks. In [19] (see also
[20]), upper and lower bounds are derived for the capacity of a
multiple access channel where all packets are correctly received 1f
the collision size does not exceed a fixed threshold and otherwise
all packets are destroyed.

In this paper, we consider a generalization of the collision
channel, where the receiver can demodulate several packets
simultaneously. It is assumed that the number of correctly
demodulated packets is a random variable, which, given the
number of packets simultaneously transmitted, is independent of
the backlog and of the number of previous retransmission
attempts. This random variable can take any integer value
between zero and th  collision size. Thus. the channel is described
by a matrix of conditional probabilities (¢,i) where ¢, is the
probability that & packets are correctly demodulated given that
there were n simultaneous transmissions. We analyze the usual
Aloha algorithm with the multipacket reception capability just
described. Users are synchronized so that transmissions take place
within one slot, and at the end of each slot, stations that did
transmit a packet learn whether or not their transmission was
successfil Unsuccessful or backlogged packets are retransmiued
in each subsequent slot with probability p, 0 < p < 1. It turns out
that multipacket reception capability can stabilize Aloha. Our
main result states that the maximum stable throughput is equal to
the limit of the average number of packets correctly received in
collisions of size n when n goes to infinity. To show this, we
model the channel backlog as a Markov chain, and then study its
properties by using some simple drift analysis techniques.

The last part of this paper is a study of the properties of the
backlog in the nonergodicity region. Unlike the backlog Markov
chain for slotted Aloha which is always transient 1], the backlog
for our model does in general have a null recurrence region of
positive length, which depends on the matrix (e,) and on the
retransmission probability p. However, transience in the nonergo-
dicity region can be ensured for a large class of systems, and in
particular for channels where the number of successful simultane-
ous transmissions is bounded.

H. MULTIPACKET RECEPTION MODEL

Let A, be the number of new packets arriving during time slot
k. Assume that (Ag)k=o are i.i.d. random variables with
probability distribution:

PlAg=n)=), (n20)
such that the mean arrival rate A = Z%_ 7n\, is finite. New
packets are transmitted with probability one at the beginning of

the first slot following their arrival.
Given that n packets are being transmitted in one slot, we define

0018-9286/88/0700-0640$01.00 © 1988 IEEE
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forn=21,0sk=sn

€nc=P[k packets are correctly received |n are transmitted].

The multipacket reception propertics of the channel are summa-
rized by the stochastic matrix

o €1
€0 € € 0

€0 €nl €nn

which we refer to as the reception matrix of the channel. For
instance, the reception matrix for the usual collision channel is

1
0o O
0

o e e = OO

while for a system with capture it has the form

0 1
1-x; X2 O

1-x, Xp
where x, is the probability of capture given that the collision size

is n. The model studied in [19], [20] can be described by a
reception matrix of the form

B

OO

[

0 !
10
10 0
L." -

Note that by letting ¢,, # 0 our model allows not only collisions
but also background noise to be a source of errors.

Denote by X, the number of backlogged packets in the system
at the beginning of slot n. The discrete-time process (Xpsnzo 1S
easily seen to be a homogeneous Markov chain. We define the
system to be stable if (X,),=0 Is ergodic and unstable otherwise.
The average number of packets correctly received in collisions of
size n is denoted by C,, = I}, keqe. We can now state the mamn
result.

Theorem 1: If C, has alimit C = lim,-. C,, then! the system
is stable for all arrival distributions such that A < C and is
unstable for A > C. This also holds if C is infinite. 1f iMpue Ch
= + oo, then the system is always stable.

The proof is given in Section III. In the remainder of this
section, we use Theorem 1 to analyze several simple random
access channels that fall within the scope of the multipacket
reception channel.

1) Mobile Users with Pairwise Transmissions. Consider an
infinite number of transmitters 7, T, -*-, and an infinite
number of receivers Ry, R;, - -, whose positions in the plane are
iid random variables. Suppose that transmissions are pairwise

'"This result holds under the assumption that the Markov chain of the
number of backlogged packets is irreduci*  d apenodic (for details and
sufficient conditions, see Section HI).
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Fig. I. Pairwise transmissions with only one success (3-3).

in the sense that transmitter T, sends packets only to receiver R,
and R, is only interested in the packets sent by T, (see Fig. 1).
Assume also that each receiver can only detect correctly the
packet sent by the closest transmitter (in particular, this is the case
if there is perfect capture, see Example 3 below). The successes of
transmissions occurring at the same time are independent, so that
forn = 2

€= <Z> p(m*(1~p(n))~-*

where p(n) is the probability that any given transmitter is
successful in a collision of size n, which is equal to 1/n if we
assume that all locations are memoryless, i.e., independent from
slot to slot. It follows that

Ch=np(n)=1

and the maximum throughput is 1. More generally, if because of
channel noise, the message of the closest transmitter is received
correctly with probability « (in other words ¢, = «), then the
throughput is equal to «. The assumption that the locations of the
stations are memoryless is equivalent to assuming that they move
infinitely fast If this simplifying assumption is dropped, then the
number of successes depends not only on the current number of
retransmissions, but also on the previous history of retransmis-
sions, and thus the problem is no longer encompassed by our
multipacket reception model. In Fig. 2, the result of a simulation
shows that for moderate speeds, the actual throughput is well
approximated by the foregoing analysis.

2) Frequency Hopping Random Access Channel: Consider a
finite population of N users transmitting by frequency hopping, as
in (111, [22]. For each packet he wants to transmit, a user selects
with equal probability one frequency in a fixed set of ¢
frequencies. A packet is correctly received iff no other packet 1s
transmitted on the same frequency during the same slot. We
compute (eve)iskzn, and C = limy-e Cu. If the users have
infinite buffer space, then C can be taken as a good approximation
for large N of the maximum stable throughput of the system,
which is unknown. If the users have no buffer space, as 15 often
assumed, the back’og Markov chain is always ergodic, but even
then, one should expect reasonable delays in large population
problems only for arrival rates below C. The computation of the
reception matrix of this channel is a simple combinatorial problem
of random assignment of objects to cells (e.g., see [23, App. A]).
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Fig. 2. Throughput as a function of velocity for mobile users with pairwise
transmissions. Stations moving in a square region; velocity units; percent-
3ge of square side traveled in one slot. Retransmission probability set to
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(o)

Denote by Ty, T3, **+, Tuthe users, all involved in the collision,
and also denote by S the set of users whose packets are correctly
received. Two cases need to be considered.

a)2 =< Ngzx=qg Wehave,forl <= j = N

ENj=<1}J) P[S={T|, TZ» vty T;}] (l)
/’
and the following decomposition:

P{T, Ty, =+, Tj} € S1=P[S={T, T, *--, T}}]

r w~
+P l' U {{Th T Ty} S}_]l

k=j41
easily yields the desired expression

N-y
PIS={T\, Ty, "+, T)}}1= 3, (- 1)*
kw0

. <Nk—j) PUT, Ty *+*, Thsjy € S) Q)

where only one term is left to compute

PUT, Ts, -y Ty} S 8]

_aly=1) e (q=j~k+D)g-j=k)N-I-*
= o

3

forl =j=N,0=k s N - j. Putting (1}, (2), and (3) together
gives the result

NEARS N-j
o (1) E e (V)

L 9(g=1) - (g—j—k+ D) (q-j-k)NI-*
v

@

for 1 = j s N. Notice in particular that ey -1 = 0. Let us now
compute the average number of packets correctly received in
collisions of size N, Cy = Ej."_ yJény. By using (4) and summing at
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J + Kk constant, we get

N
q¥Cn=3, qlg=1) =+ (g-i+1)g-i)N-!

i=1
. E (-nn Nt

“~ A= n= DN =D

which can be simplified as

SN
"= X IO
cqlg=1) - (@it D)(g=-DV -1yt

to get the final result

C N(l 1>N"
N= q .

b) N > g: In this case, there can be at best ¢ — | successes
in a collision of size N. The same method applies to get the
following probabilities:

g-Jj-1 _:
eNj'_'(/;-l) kEO <Nkj)(-l)"

_q(g@=1) ‘- (g=j=k+1)g=-j-k)N"1"k
qN

(1sj=q-1)

ey=0 (gsj=sN)

resulting in the same expected number of successes as before

o N( ’)N"
N= l—; .

N frd

Now we let the population size N go to infinity and we apply
our result. If we let V grow to infinity while keeping ¢ constant,
we have limy..., Cy = 0, so the system is always unstable., On the
other hand, if we let N go to infinity while keeping ¢ equal to a
fixed percentage of the population size, i.e., N/q constant, then
limy-w Cy = + oo, and the system is always stable. It is easily

*shown that to get a finite maximum stable throughput, g has to
grow as NV/In N.

3) Mobile Radio Network with Capture: Consider an infinite
number of users independently and uniformly distributed in 2
circle of radius R, whose positions are independent from slot to
slot. Users transmit packets to 2 common receiver located at the
center of the network. Denote by Py and P, the received powers
of the strongest and the next to strongest packets involved in a
collision. Assume, as in [12]~[14], that the strongest packet is
correctly received iff /P, > K (K being a system dependent
constant), and that all the other packets involved in the collision
are not received successfully. Assume, morzover, that the
received power of a packet only depends on the distance r between
the sender and the receiver

_ constant

P —

(a=2).

Ther there vill-be capture iff
>0
where 8 = K@ is the capture paruneter, and ry, r, are the

distances of the closest and the next to closest senders from the
receiver.

g m———

2
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Denote by D the distance between a given user and the
receiver. It is easily shown that the pdf of D is given by

r

=i (0srsR).

pp(ry=2

Given N users, denote by Uy the closest from the receiver, and by
Dy its distance from the receiver. Computing the cdf of Dy and
taking its derivative, we obtain

.DDN(I‘)=-2N-}% [1—(%)2]1\,—' 0=rsR). (5

Given Dy = r, the other N — 1 users are uniformly distributed in
the annular region (r, R). So if. NV users collide and Dy = r, Uy
will be correctly received iff all the other users are in the annular
region (8r, R), which is empty if Br > R. Therefore, if we denote
by

Py(r)=P[capture| N collide, Dy=r] (N22)
we have
[R2-52r2]~-l . _R
R iraz
Pu(ry={ L R=r 8. ®
0 if re=
ir B

Thus, the probability of capture in a collision of N (N = 2) is

R/8
en={ Pu(r)poy(r) dr.

Using (5) and (6), and with the change of variable x = /R, this
is easily computed

18 1
6~|=‘ 2Nx(1=B2xIN-1 dy = |
Jo B2

It follows that C = 1/8? is the maximum stable throughput.
Notice, in particular, that for 8 = 1 (perfect capture), we have C
= 1 and for 8 = < (no capture), we have C = 0.

Under certain conditions, the performances of Aloha in the
multipacket channel can be improved by varying the retransmis-
sion probability as a function of the channel history, and a
maximum stable thrcughput of sup,.o € 27, C,/nlx" can be
reached (see [31}).

flI. ErcobiciTy REGION

The number of backlogged packets in the system at time n,
(Xwnzo, is a homogeneous Markov chain whose one-step
transition probability matrix can be comptited as a function of p,
(M=o, and E. Denoting by B;(/) the probability of having j
retransmissions out of i backlogged packets

Bij)= ( j) /(1= p)i=t @

we get

Poy=Ny+ i Nnénn

n=l

-]
Pog = E >\k+n5k+n.n

n=Q

(k=1)
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and fori = 1
= i
Piick=3 M 3 Bili)ensjmex  (IsSksi)
ned Jmk
{ . @ N
Pit’:)\o [B{(O)+E Bi(.i)é;o] + E >‘n E Bl(j)enw.n
J=l nel  j=0
N @ i
Piisk= 33 Men 3y BiDeprksnn (k2 1) ®)

nw J=0

Sufficient conditions for (X,),z0 to be irreducible and apen-
odic are as follows:

s if0<p<I:
o0 (9a)
Nt D Mém<1 (9b)
nwui
€o¥ 1 (%)
°eifp =1
No#0 (9a)
Mot Y Memn<]1 (%b)
n=l
forall iz 1, ¢p#1. (9d)

These are only sufficient conditions, but they hold for almost all
nontrivial systems. For example, if (9b) does not hold, then zero
is an avsorving slate, since the left-hand side of (9b) is equal to
Py. Also, (9¢) simply means that the successful reception of a
single packet in the absence of other active users is possible.
Assume, for instance, that 0 < p < 1 and that the arrivals are
Poisson distributed. Then we only have to assume (9¢), and (9b) 15
true unless there is perfect reception, thatis ¢,, = | foralln = 1,
in which case the system would of course always be stable. The
case p = | gives rise to a number of pathslogical situations,
hence, the much stronger condition (9d). It generally tums out
that either (9d) is not necessary or the stability region of the
system is obvious. For instance, it is clear from the ‘transition
probabilities that slotted Aloha with p = 1 is always unstable. In
any case, it is assumed in what follows that (X ,),»0 is irreducible
and aperiodic.

Proof of Theorem [: The proof is based on drift analysis.
Recall that in general, the drift at state / (/ = 0) is defined by

di=E[ X1 - X, | Xi=i].

If we denote by Z, the number of successful transmissions in slot
t, we have

X - X=4,-53,
and therefore
di=\—-E[Z| X, =i]. (10)
Now if R, is the number of retransmissions in slot ¢, we get
P(E=k| X;=i, Ai=n, Ri=j)=¢qux

for0 < j <i,0=< k= n+ jand with the convention that ¢gy =

it
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Cy = 0. Thus,
E(Z|X,=i, A;=n, Ri=j1=C,,,

and

@« {
E[Z|Xe=i1= 3 M 3, Bili)Cas,e 1n
n=0  j=0

The value of the drifts for our model follows from (10) and (11)

d,=)\‘ E )\n 2 Bi(j)cn+/- (12)

nwmQ J=0

The idea of the proof is to compute lim;.., d; which will turn out
to be a very simple expression, and then apply the results of [3]
and [24] to determine the ergodicity region of (X )520. Let us first
recall the two resuits that will be used in the sequel.

Lemma A (Pakes [24]): Let (X, )n=0 be an irreducible and
aperiodic Markov chain having as state space the nonnegative
integers, denote by (Py) its transition probability matrix, and by
d, its drift at state /. Then if for all i |di| < o, and if lim sup;e d;
< 0, (Xa)n=o is ergodic.

Lemma B (Kaplan [3]): Under the assumptions of Lemma A,
if for some integer NV = 0 and some constants B = 0, ¢ € (0, 1)
the following two conditions hold, then (X,).»0 is not ergodic:

jyforalli =2 N,d, >0

i) forall i = N,all§ € [¢, 1], 0" — Z,246' = -B(l - 9).

From (12), it can be seen that |d;| is finite since

ot i
ldl=h+ ) M D) BU/)CosyS2N+ip.
n=0 J=0

Next, the drift limit is given by the following lemma.

Lemma 1: If C, has a limit C, finite or not, then lim;—o, 3 o
)‘nZ}'-O Bl(j)clw/ = C.

Proof of Lemma I1: We consider two separate cases
depending on whether C is finite.
BDNC = +o,

Fix A > 0 and pick r = O such that A, # 0. There exists an
integer M such that for alt n = M, C, > A. Fix such an M. Then
we have fori = M

@ i i i
S A Y BUNCae>N ) BilYCrr>NA Y Bi())
n=0 =m0 j=0 . M

which terminates the proof, since for any fixed M = 0

!
lim 3 Byj)=1. (13)
1 QI-M

DC < +oo,
We have fori > M

<o i M @»
2 MY Bl)ICasy~C|S Y, B Y MlCay=Cl

and =0 =0 n=0

+ 3 B Y MG, ~Cl (14)

JuM+1 nul

Fix ¢ > 0. There exists M such that foralln > M, |C, - C] <
¢/2. Fix such an M. Then

Y B Y MiCuey=Cl<3.

J=M+1 LET)
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Also, if L is an upper bound for C,

M o M

. o €
2 Bi() 3 MICuy~Cls2L Y BN<3
Jm0 nw( j=0

for i big enough because (13) holds, which takes care of the first
term in (14) and ends the proof of Lemma 1.

Putting together (12) and Lemmas A and 1, we get that 1) if
liMpo Cp = +®, then limje di = =0, and (Xp)nzo iS
ergodicy'and 2) if limywe, C, = C < + o, thenlimya dy = N —
C, and (X)n=o is ergodic for A < C. If A > C, we can apply
Lemma B and conclude that (X ,),z0 is not ergodic provided that
Kaplan's condition ii} holds. This is the purpose of Lemma 2,
which is the last step in the proof of Theorem 1.

Lemma 2: Ifforalln = 1, C, < L for some L € (0, »), then
Kaplan’s condition holds: there exists a constant B, an mteger N,
and a real ¢ € [0, 1j such that

§i~> Py8i=-B(1-0) allizN, 8 € [c, 1].
j

Proof of Lemma 2: According to {25], it is enough to show
that the downward part of the drift, defined as

i
D(i)= =, kPij-x
kul

is bounded below. From the transition probabilities (8), we get

i ® i
D(i)= "2 k E M E Ba(./‘)én#/,n+k

k=] nm0  jumk

which can also be put in the form

i L J
D)= —2 BilJ) 2 An 2 k5n+].n¢k

Jul nul kwl

from which it follows that

I3 o
D)z =] Bi(j) 3, M Cruyz —L.
J=1 n=0

]

Notice that in the proof of Theorem | (and this also holds for
Theorem 2 below), the exact expression (7) for B{/j) is never
used. The only requirements are that (B{/))os, s, is a probability
distribution, arid that (13) holds. Therefore, our results are valid
for a larger class of retransmission policies than was first
assumed. For example, there could be K priority groups, each
with a different retransmission probability.

Although Theorem 1 is quite general, in many practical cases,
the reception thatrix has a very simple structure and the stability
region can be obtained with virtually no computations. This
happeus for instance in radio networks with capture where all is
needed is the limit of the second column of the matrix, or also in
the simple case where above a centain collision size N, the
transmission is too garbled for the receiver to be able to decode
anything correctly, so that C, = Qforn > N,

This last exampie is a particular case of a noteworthy feature of
Theorem 1, namely that the stability region does not depend on
any finite number of rows of the reception matrix. In fact, any
number of modifications of the matrix that leaves limp.o Ca
unchanged does not affect the stability region. Altbough this may
be surprising at first sight, it can be intuitively explained by the
fundamental instability of the collision channel: unless the

t




gy
24

Cia B

GHEZ ef al.: STABILITY PROPERTIES OF SLOTTED ALOHA

receiver is perfect (all ¢,, equal to 1), the backlog will eventually
exceed any prefixed value with probability one, thus it is the limit
of C, that determines the stability region.

The stability region is also unchanged if the first transmission of
packets is delayed. If new packets are backlogged, that is,
transmitted for the first time with probability p in each slot
following their arrival (this transmission rule appears in the
literature as controlled-access or delayed first transmission), the
drifts become d; = N - Z{., B{/j)C; for i = 1, and from
Lemmas 1 and 2 the ergodicity region remains the same,

If C, does not have a limit, Theorem | does not give the stable
throughput of the system. Even though in almost all practical
cases, and indeed in all the examples of Section II, C, does have a
limit, it is conceptually interesting to examine the case when lim
infpww Cp # lim sUpy—w C,. It is worth pointing out that adding
constraints as strong as the following on the reception matrix still
does not imply that C, has a limit:

1) (€x0)nz1 is nondecreasing

il) (€nk)nzx is nonincreasing for all k=1

i) €r=énie) fornz=2, 1sk=sn-1

although the counterexamples we have been able to build are
somewhat contrived. Noticc that conditions i) and ii) above imply
that each column has a limit o, = lim,-. € (k = 0), which is
very likely to happen in practice. In any case, Theorem 2 below
still gives some information on the stability region, although the
exact result requires in general the complete knowledge of the
sequence (Cp)nx 1. In fact, given any nonnegative numbers o <
< (3, one can construct a reception matrix with nth row average
C, such that:

i) liminf Ch=«

=

iiy limsup C,=8
nw-o

and such that the maximum stable throughput is v.

Theorem 2: The system is stable for A < lim inf,~. C, and

unstable for A > lim supp—.e C,.
Proof:

a) If A < lim inf,~. C,, then (X )0 is ergodic.

If lim inf,~e C, = + 0, then limy~p, C, = + o0, and the
result has already been proved, so assume that him inf,m. C, 15
finite From Lemma A, it is enough o prove that for all e > 0,
there exists N such that

di<A=liminf C,+¢  allizN.

nesco

Recall from (12) that we have

di=x= 3 M > Bi)Crse (15)

nw jw0

So it is 01ly needed to prove that for all ¢ > 0 there exists /N such
that

® {
S M Dy Bilj)Cryy> liminf Cy—¢  all izN.
am0  ju0 e

Now by definition there exists M such that for all k¥ = M:

Ce>liminf C,~—¢

n=
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and therefore for all i > AM:

o i i
3 M D) Bl)Cue,>(liminf Ca=e) Y Bi()
nwi =0 ame juM

which completes the proof since (13) holds.

b) If N > lim suppas Cpy then (X p)azg is not ergodic.

Since A is finite, in this case lim sup,-.., C,, is necessaiily finite.
Therefore, (Cp)nz: is bounded and from Lemma 2, Kaplan's
condition holds. Thus, it is enough to show that for all ¢ > 0,
there exists N such that

d>A=limsup C,—¢ allizM.
n=w

From (15), we only need to show

fad i
S M S Bi())Chuj<limsup Co+e  allizN.
aAm0 =0 nme

Since there exists M such that forall k = M

Ci<limsup C,+¢
n—o

then if L is a;l upper bound for C,, we have fori = M

0 i M=1
3 M D BlICrsy<L D) Bilj)+ lim sup Coté
n=0 Jm0 j=0 e

from which the result follows, using (13). 0O

IV. BEHAVIOR OF THE BACKLOG MARKOV CHAIN IN THE
NONERGODICITY REGION

In this section, we further investigate the properties of (X,)n20
in the case A > C, assuming of course that (C,),~ has a finite
limit. It has been proved in [1] that the backlog Markov chain for
the usual slotted Aloha algorithm is transient, but this result
cannot be generalized to our model when A > C. We give below
an example showing that (X )20 can be null recurrent when the
mean arrival rate \ belongs to an interval of positive length. The
boundary between the null recurrence and the transience regions
generally depends in a rather complicated manner on both the
reception matrix and the retransmission probability p. We give a
sufficient condition for (X,)a=0 to be transient when A > C, as
well as bounds on the recurrence region.

Consider the reception matrix defined by

1
€k =3 (isk=sn)

1
.':1—-—
€n0 n

forn = 1. Then C, = 2§_, k/n* = (n + 1)/2n,and C = 1/2.
Using Lemmas C and D below, we show in [26] that X, is

recurrent for A < R(p) and transient for A > R(p), where R( p)
is a function of the retransmission probability p and is given by

(1-p)

1
R(p)=;+-—';§-— In(1-p) 0<p<l)

R()=1.

it is easily seen that R( p) is an increasing function of p for p €
10, 1[ with extrema lim,.o R(p) = 1/2 and lim,~, R(p) = 1.
Fig. 3 sumrnarizes the behavior of X, for this example.

It is somehow surprising to see that in this case, as well as in all
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Fig. 3. Transience and ergodicity regions as a function of the retransmission
probability when e, = 1/n,

the other examples we have computed, the recurrence region
becomes larger as p increases. Intuitively, the recurrence of X,
when A > C seems to be due tc the fact that transitions from any
state i to 0 (or to some fixed integer k) are possible and that the
probability of such an event, Pjg (or Py,), goes to zero slowly
with i. It can be checked that these probabilities are increasing
functions of p when i is large enough.

Transience is ensured for A > C if the supremum of the
elements of the kth-column goes to zero faster thau k2. This
condition holds for all the examples in Section II, as well as for
many real life cases, due to the practical limitations on the
receiver capabilities. In particular, it is always verified if the
reception matrix has only a finite number of nonzero columns (or
equivalently, if the backlog Markov chain has uniformly bounded
downwards transitions, as defined in [3]) which happens, for
instance, if there is capture. Note that the proof of Theorem 3
below is of course valid for the conventional collision channel,
and in this case becomes somewhat simpler than the proof in {1].

Theorem 3: If liMgao A2 SUPsuk € = 0, then (X )azo IS
transient for A > C.

Because of the complexity and lack of structure of the one-step
transition probabilities (8), few results on the recurrence and
transience of Markov chains can be applied to our model. Before
proving Theorem 3, let us introduce the following two criteria
from [27].

Lemma C: Let (X, )20 be an irreducible and aperiodic
Markov chain, having as state space the set of nonnegative
integers, and with one-step transition probability matrix P =
(Py). (X mnzo is recurrent if and only if there exists a sequence
(Padnzo such that

1) lim y,= 400

neew

2) for some integer N>0 Y y;Pysy,  all izN.
120

We will only use the sufficiency part, which has also been proved
in [24].

Lemma D: With the same assumptions as in Lemma C,
(X )a=o is transient if and only if there exists a sequence (Y )rzo
such that

1) (¥n)nza is bounded

~
2) for some integer N>0 %) y;Pysy;  allizN
iﬂ”

3) for some k2N ye<j4, ***, Yy~i-
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Sufficiency under the additional constraints y; > 0 and lim;.., y;
= 0 has also been proved in [28]. Also, the sufficiency parts of
both lemmas are an immediate consequence of [29, Theorems 5
and 6] together with the results in [30].

Proof of Theorem 3: We use Lemma D with y, = 1/(n +
1)%, 6 € 10, L{. We have

{
> Pyyysyi @ Y Wiex=Y) Pri-k
i k=]

+ 37 Pek=Y) Pk S0 (16)
kml

and

i
(1" Prak=2) Primict (4 1140
kel

Y Gik=P) P =D () + U'() (17)
k=1

where we have defined

res ; + l 1 1
D (l)=(1+l)l 8’§| [(i+l_k)8—(i+1)a]

* E A E Bl(j)fnﬁ-/.nﬂ-k

n=0 =k

PN + - 1 - 1
ur(iy=(i+1! "E [(;+1+k)’ (i+l)"]

' E Nesn E B:(j)5n+k+j,n' (18)

n=0 /=0

The drift of X, at state / can be computed from the transition
probabilities (8)

{ -
di= = 3 kPri_x+ 3y kPuisx=D(i)+ U(i) (19)
k=] kw}
where we have defined

i *® i
D(l)‘-’-‘ - E k E )\n 2 Bi(j)5n+j.n+k

k=l =0 =k
U= k'3 Mak Dy Bili)ejunsnn- (20)
k=i =) jm0

The idea of the proof is to show that
}1'2 DD+ U (D}=-0 ,!.'.m d; 1)

and since it has been proved in Section III that limj., d; = A —

C, we will be able to conclude that (X ,).»¢ is transient for A >
C.

1) 'l_l.rg [D'(i)+6D(i))=0.

o
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From (18) and (20)

{ i+1 \? 0k
D*(D)+0D(i)=(i+1) [(.’* > -1—7—]
l ;_;l i+1-k i+1
¢ E kn 2 Bl(j)ﬂuj,pﬁk
neQ  jok

which is more conveniently written as

am0  Jul k=1

. i+1 *’__1_0k
iri-k Tr1 | Sneineke

This expression is nonnegative since

-3 i J
:g D'()+0D(D)=(i+ D Y M 3 B Y,

(1 <ksi).

Define yx = SUpnzx € Then

0sD'(D+8D(Hs(i+1) i A E Byi(j) )I‘_,

a0 j=1 k=1

. el N 9k
1=k r1 | Tk
2‘; i+1 O_l_ik_
& [\i+1-k 1 | T

D’ (i) +éD(i)sx|(i)+xz(i)

S(i+1) i M

n=0

i That is
' 22)

with, assuming for instance that i is odd

) o i+0H2 i+1 [ 0k
x.(i)=(1+l)2)\,. E [(m) ~1- 1 Yn+k

an0 A=)

e ' i+1 ) 0k
=0+ M [( ) -1-——] Ynsk-

o kettnn i+1-k i+1

(23)

Define for 0 < x < I the function

i+1 i+1 \¢ 0
PI= [(:T:?) "]"z-

% We show that x,(i) and x(i) go to zero independently. Fix ¢ > 0.

It is easily proved that for each i =
nondecreasing function of x. Also

‘é i+1 __l_ o
"(_>‘i+1[4(2

A
> 1)-20]=-—

i+1

where A is a positive constant depending only on 6. From (23)

@ i+ 12 3 n+(+1)2
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k3, = 0. So we can

If limMgeoo k2, = 0, then limyw, 1/n%2
(s v2 5o, Ky <

choose i large enough so that for n =
ne. Then

soseid 3o (o5 oea (24}

Now if we choose i big enough' so that for k > (i + 3)/2, we have
Tk < €/k?, then

i

Xz(i)Sé i )\n E

nul km(i+ 32

NV
-k i+1 | ek
de ¢ i1 o 0k
S, 2 [(H—l—k) "'"Tﬁ] '

kw(i+3)/2

(i41)

By boundmg the sum in the last equation by integrals, it can be
seen that it is upper bounded by a linear function of i.

9 limpe (U'() + 0UG)] = 0.
From (18) and (20)

N, i+1 a_[+0k
= i+1+k i+ 1

U +0UM =T i+ 1)

o i
. E )\k+n E Bi(j)éjtkén,n'

n=o =0

With a change of variable

@

i n
U'(i)+0UD=(i+1 S B 3 M Y

j=0 =l k=]

1+l
1+l+k

By using the following inequalities:
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2
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1 +x)?

we get

0sU'(+0U(i )50( )(1+l) > Bi())
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Fix ¢ > 0. Choose N such that 3
being fixed, choose / large enough so orthat 1 1@+ 1)532’_l ni\, é}

/2.
It should be clear at this point that unlike the ergodicity region,

nh\, < ¢/2, and then, N
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the recurrence region depends in general on the elements of the
reception matrix (instead of only the row averages) and on the
retransmission probability p. For this reason, an exact expression
for the recurrence region seems rather difficult to obtain;
nonetheless, the method (see [26]) that we used to study the
example in Fig. 3 can be generalized to obtain the following upper
and lower bounds on the recurrence region.

Theorem 4: (X,)a=o is recurrent for A < L and transient for A
> U, with L = max {[|, SUPo<s<t sy SUPo<a<i Ia’} and U = min
{uy, infococy g infocp<y i} Where

o d d o i+n+1
1|=111"f: (i+1) ,.E-:o )\nkzl Bi(J) zl In (m €nvik

1 A
lo=7 lim (i+1)!~¢ PIRIDIT:T0)
oo am0 sl

n+j

c Y s ) = (i n—k+ 1D leny
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@ i
1;:%'@2 G+ On (401 TN S BiG)

n=0 J=1
n+j
=% [ln i+ n+ D] = (o (i +n =K+ 1DIPlens
kwl
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up=lim (i+1) (ln (i + 1))? i M Y Bi())
e n=0 i=1

n+j l l
'Z;I In(i+n+t2-k) In(i+n+2) |

@ i
w=3lim (141" 3 M 3 BU)

n=0 =l

n+j l l
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knl

o i
uaf:%(m) n G+ D1 S 0 S B
Am0  jml

‘Il+] 1 _ 1
) fn(en+2-KF [nG+n+2] | o

k=l

We are assuming that the himuts above exist, which indeed
happens 1n most practical cases. The thecrem is valid if any of
these limits is infinite. In particular, if L = + oo, then X, is
always recurrent. Note that usually, it is not necessary to carry out
all the computations, because one of the three terms in the
definition of L 15 equal to one of the terms in the definition of U.
In fact, in most cases, we have Supgcget o = infococ) U if0 < p
< l,andu, = /,if p = 1. The proof of Theorem 4 can be found
in [26].
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Control and Optimization Methods in
Communication Network Problems

ANTHONY EPHREMIDES, rELLOW, IEEE, AND SERGIO VERDU, SENIOR MEMBER, IEEE

Abstract—In this paper we focus on two areas of communication
network design in which methods of control and optimization theory have
proven useful. . aese are the area of multiple access communication (for
networks with shared links such as radio networks and locsl area
networks) and the area of neiwork routing (for networks with poiat-to-
point intzrconnections). We review a few selected problems in each ares
to show the role of the control concepts involved and we then proceed to
identify other areas of communication network design in which the same
control theoretic and optimization methodology may be applicable and
useful. We do not survey the work done in this area, nor do we review
work in control areas whose methods are applicable in other communica-
tion network problems. Instead, we attempt to bring to the attention of
the control systems community the numerous instances of problems
arising in the pure cominunication network design process that can
benefit from the attention and the capabilities of this community.

I. INTRODUCTION

OMMUNICATION networks are designed and built in order

to share resources. If interconnecting systems and bandwidths
were available at no cost, then the solution to the problem of
communication would be to assign dedicated communication links
(channels) of sufficient capacity to every pair of conceivable users
to meet their needs. This not being the case, it is necessary to
multiplex the sources of communication traffic in order to
optimize various cost criteria. Frequently, this optimization is
dynamic and done on the basis of feedback that monitors the
evolution of the degree of utilization of the network resources.
Thus, we should expect a number of problems arising in
communication network design to fit naturally in the framework
of control systems design. In this paper we wish to demonstrate
that indeed this is the case and to show how various control and
optimization methodologies have been used in the study of
communication networks.

In the beginning there was a single communication network, the
telephone network. It represented a multibillion dollar investment
and seemed to serve reasonably adequately the voice communica-
tion needs. The explosive growth in data communication needs
during the last 30 years built up the pressure for additional and
alternative networking options. As a result, the notion of store-
and-forward switching (known also as message switching) was
introduced in the early 1960’s. This notion represented a
breakthrough since it constituted a radical reversal of thinking
with respect to the circuit-switching process; namely, instead of
securing an open, dedicated ‘‘pipe’’ for the transmission of
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messages by means of hardware switches, it allowed a step-by-
step (node-by-node) forwarding of messages, thereby permitting
each node to switch messages by deciding when and where to
transmit the messages in its buffer. In the last 20 years we have
seen an avalanche of technologies (fast switching, time division
multiplexing, local area networks, fiber optical networks, inte-
grated services digital networks, etc.) and a proliferation of
operational public and private networks that put these technolo-
gies to test and challenged communication engineers. In addition,
they should challenge control engineers as well.

Without attempting a survey of this vast application area we
wish to promulgate the viewpoint that many (if not most) specific
sub-problems in the network design process are natural control
problems. In support of this thesis, we choose, first, to demon-
strate how two major areas in communication networks (routing
and multiple access) have benefitted from the use of techniques
borrowed from what is traditionally perceived as control systems
methodology and, second, to mention additional areas that are
likely to benefit from the control systems community. As
illustrated in this paper, the techniques that have proved uscful in
communication networks include: dynamic programming (e.g.,
(2], 16}, (8]-[10], [22}, [29], (38}, [39], 47}, {49], [54}); linear
programmiing (e.g., [50], [51]); constrained and iterative optimi-
zation (e.g., [5], [14], [16], [42]); Markov decision theory tools
{e.g., [2], 26}, [29], [38]); control of Markov chains (e.g., {11},
[17], {18}, [20}, [40), [45]); stability analysis of stochastic
systems via Lyapunov methods (e.g., [31], [43]); sample path
dominance (e.g., [2], [52]); and convergence of distributed and
asynchronous algorithms (e.g., [6], [16], [42)).

The problem of routing is encountered in all and every network
that does not permit the source to reach the destination in a single
transmission hop, *ut instead it must traverse a path of intermedi-
ate links. By contrast, the problem of multiple access is
encountered primarily in those networks that permit the nodes to
reach their destination directly in one hop by having to share the
same link with other transmitting nodes. In addition, the two
problems are fundamentally different in nature and, jointly, cover
considerable ground in the networking area. Finally, together they
facilitate the identification of additional design issues and the
extension of the applicability of suitable control methods. Thus,
they represent *‘cornerstone’’ areas of network design.

Routing can be studied either macroscopically or microscopi-
cally. The macroscopic viewpoint considers basically a flow
model and determines the splitting of the flow in order to reach the
destination in minimum time with efficient use of the network
resources. It is traditionally referred to as static routing. The
microscopic viewpoint dissects the flow process down to the
atomic level of the individual transmission unit, the message (a
string of bits commonly referred to as packet), and determines the
path each message must follow at each of its hops through the
network. It is traditionally referred to as dynamic routing. Both
viewpoints are explored in Section II.

Muitiple access is a collective term that refers to numerous
problems that deal with the dynamic allocation of a single
resource among users who can coordinate their use of that
resource only by making use of that resource. These problems
arise primarily in the context of radio channels but also in the
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Fig. 1. Layered network showing link lengths. Source is node 1 in U; and
destination is node S in Us.

context of shared cable resources in local area networks. In
Section 11, we explore the main muitiple access problems where
control methods have been successfully applied.

Bcth in the case of routing as well as in the case of multiple
access we place the empnasis on the control techniques that have
been used. We then show how these techniques, sometimes with
slight modification, can be naturally transported to other problem
areas such as voice-data integration, flow control, and the
scheduling of messages and links. This is done in Section IV.

iI. NETWORK ROUTING

The problem of routing in communication networks is one that
has received early attention and has experienced significant
breakthroughs in the brief history of the field of communication
networks. It is one of the first problems that gained prominence as
a .csult of the emergence of store-and-forward switching. It is also
one in which analytical tools and available theories applied nicely
from the beginning.

A. Static Routing

Given a network (a set of nodes connected by directed links) a
path connecting the source node to the destination node has to be
selected from the set of all possible such paths.! In the simplest
formulation, the problem s one of finding the shortest path, i.e., a
length 15 assigned to each link and the optimization criterion is the
total path length. This problem is one of the archetypical
combinatorial optimization problems (the solution can be found by
exhaustive enumeration of a finite set of possibilities—all possible
paths from source to destination). Among the many existing
shortest path algorithms (see, e.g., [41]), the Bellman-Ford
algonithm (1956) 1s of particular interest to our exposition, both
because 1t 1s based on dynamic programming and because, as we
will see below, 1t easily lends itself to distributed asynchronous
implementation. A natural choice to find the shortest path from
source to destination 1n a layered network (i.e., one in which the
nodes can be grouped in subsets U, -+ + Uy such that the source
and destination nodes belong to U; and U, respectively, and
there are links only between nodes in adjacent layers U, and
Uy) such as the one in Fig. 1, is the dynamic programming
algorithm, where the shortest paths and distances (costs-to-go) of
the nodes in layar Uy to the destination are computed based on the
shortest paths and distances of the nodes in layer Uy,,. If the

! All the algorithms and results discussed in this section can be extended to
the case where there are several source~destination pairs in the network.
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Fig. 2. Arbitrary network showing link lengths. Source is node 1 and
destination is node S.

network is not layered (such as that in Fig. 2), its shortest path can
be obtained by finding the shortest path in a layered network
derived from the original one as specified in the Bellman-Ford
algorithm: the number of layers is equal to the number of nodes in
the original network, say N, each layer contains a copy of each of
the N nodes, and there is a link connecting two nodes in
consecutive layers if such a link exists in the original network, in
addition, copies of the same node in consecutive stages are
connected by a zero-length link. (Fig. 1 was actually derived from
Fig. 2 using this rule.) It is easy to see by induction that D, (i), the
cost-to-go of node i in lay.r ¥V — k, is the minimum length of any
path from i to the destination that uses at most & links (in the
original network). Since no shortest path uses more than N — 1
links (link lengths are assumed nonnegative and, therefore, no
path containing loops need be considered), the cost-to-go of node i
at layer 1, Dy (i) will indeed be the length of the shortest path
from node i to the destination. Thus, the Bellman-Ford algorithm
can be formulated as the iteration

Dy(i)= min [Dy-1(j)+4d,) fork=1, '-- N-1 (2.1)
JEND

where dj, 1s the length of the link from i to j, N(i) is the set of

nodes for which such a link exists and it 1s assumed that Dy(i) =

o if i is not the destination node, which corresponds to the
removal of all the nodes but the destination in the final layer (Fig.
1).

. Contrary to what may appear at first glance there is a lot more
to network routing than finding shortest paths. After all, the
shortest path may not be the best path. The reason is that the real
goal is to minimize the delay experienced in going from source to
destination, and the delay encountered in each link is usually a
function of the amount of traffic carried by the link (as the link
becomes congested, it takes longer to go through it), which is
referred to as the link flow and is quantified in packets (or
messages) per second. Then, assuming a given desired flow level
from source to destination, the problem is how to distribute it
among all the possible paths so as to minimize the total delay In
contrast to the previous more elementary formulation of the
routing problem which fed to the shortest path combinatorial
optimization problem and-which corresponds to the special case in
which the link delays are independent of the flows, we now face a
continuous optimization problem which can be written as

minimize F(x)= E Dy ( > x(n))

(5} n€P,j)

subject to x € X'= {(x(l), «oex(J)) € RY,

J
> x(n)=X, x(n)zo} (2.2)

n=l

- ——




932

] SHORTEST PATHS

f

FIRST-DERIVATIVE |
DISTANCES

Characterization of the solution to the minimum-delay routing
problem.

Fig 13

where the set of all paths from source to destination is labeled {1,
e, Jh x o= (x(l), oo, x(J)) is the vector of unknown
nonnegative path flows which sum up to A, the desired flow from
source to destination; P(i, j) C {1, -+, J} is the subset of paths
that traverse link (i, j); and D;(x) is the portion of the overall
delay contributed by the link from node i to node j when the flow
it carries is equal to x. In order to characterize a global solution to
the optimization over a convex set in (2.2), it is natural to restrict
attention to convex penalty functions. In practice, it is common
that the incremental delay in a link grows with the amount of
traffic it carries and, therefore, it can be assumed that the
functions Dy are convex without affecting significantly the
practical applicability of the results.

Now, the characterization of the solution to (2.2), x*, is
straightforward. Since the feasible set X and the penalty function
F are convex, it is necessary and sufficient that the directional
derivative of the penalty function be nonnegative when evaluated
at x* in the direction of any of the elements of X (e.g., [37])

OsLiH)l zl‘- [F((1=a)x*+ax)~F(x*)] vxeX (2.3)

which translates into

0sy) D,.;(

tid)

S [x()—x*(@m)

n€P(ly)

> x‘('n)>

mé€ P{ig)

J
=S [xX(n) - x*()] dealn)  forallx € X

LER}

where d,(n) = E(i./)GL(n) D;;(EMEP(IJ) x"(m)) is the length ofpath
n when the length of each link is equal to the derivative of its delay
evaluated at the set of flows x, and L (n) is the set of links used by
path n. The solution to (2.4), x*, is the vector in X that minimizes
its inner product with the vector of distances d.«. Thus, x* puts
all its weight on the smallest component(s) of d,. The conclusion
is that the optimum flow uses only shortest paths computed
according to the derivative of the link delays.

This solution to the minimum-delay routing problem allows us
to check whether a given set of flows is optimum. Unfortunately,
it does not tell us how to find the optimum flows. Indeed, we face
the chicken-and-egg situation depicted in Fig. 3. The optimum
flows are obtained by solving a shortest path problem; but in order
to compute the link lengths it is necessary to know the optimum
flows. Nevertheless, the foregoing characterization of the optimal
solution does suggest a possible iterative precedure to find the
optimum set of flows. Starting with a given set of flows x one can
compute the minimum derivative shortest paths for that flow, and
hence, a new flow, x*(x) that is positive only along those shortest
paths. The process can then be repeated, until there is no
appreciable cost decrease. The region of convergence of such a
procedure can be improved by letting the new flow be a convex
combination of x and x*(x), i.e.,

(2.9)

o 1= (1 = o) X+ g x*(x%).

This is the so-called flow deviation methed of Fratta, Gerla, and
Kleivrock [14], where 0 = o < | is chosen to minimize

F((1 = cie)xie + g x*(xy))
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which is a speciai case of the feasible-direction nonlincar
programuming algorithm due to Frank and Wolfe [13]. The
convergence of the flow deviation method to the optimum routing
is rather slow because unfavorable paths tend to carry considera-
ble flow during many iterations unless the initial routing guess is
particularly fortuitous. Such a behavior can be improved by
reducing the flow alonig each nonminimum derivative path in
accordance to the delay experienced in that path. This is the idea
of iterative routing algorithms based on gradient projection
nonlinear optimization methods (e.g., [4]) in which the flow
decréase along a nonminimum derivative path is proportional to
the difference between its length and that of the shortest path
(according to the first derivative of the delay function). If such a
decrease would result in a negative flow, then the flow along that
path is set to zero (hence, the projection to the set of feasible
tlows).

We have seen that the problem of static network routing can be
formulated as a conceptually straightforward optimization prob-
lem that admits well-known solutions in nonlinesr programming.
What sets optimum routing in communication networks apart
from other multicommodity flow problems arising in operations
research is the fact that the optimization is carried out in real
time, and often, in distributed fashion, where each node makes its
own routing decisions based on local information. The review of
centralized routing has revealed that the shortest path problem
plays a central role in solving for the optimum routing regardless
of whether the link congestion measures depend on the link flow
or not, Hence, we will start the exposition of distributed routing
algorithms by discussing the distributed version of the Bellman-
Ford shortest path algorithm, ’

The Bellman-Ford updating equation in (2.1) suggests that the
algorithm is suited for decentralized operation because each node
can update its own estimate of distance to the destination (cost-to-
g0) provided it receives from its neighbors their own estimates
[appearing on the right-hand side of (2.1)]. The feature that makes
the study of the distributed Bellman-Ford algorithm interesting is
that it can run completely asynchronously, in the sense that the
updating and communication times need not be coordinated and
convergence can be guaranteed by simply assuming that updating
and communication between nodes never cease, without any
requirements whatsoever on the rate of communication. The proof
of convergence is a nice illustration of the analysis of decentral-
jzed algorithms where the processors are allowed to perform their
computations and to communicate the corresponding results
completely independently of one another 5], [6]. The idea is to
show that the estimates computed in the distributed asynchronous
algorithm are always sandwiched by the estimates computed by
the centralized version of the algorithm when started at two
different initial conditions, and that both centraized estimates
converge to the true distances to the destination node.

Those centralized estimates are denoted by Dy = (D(1), * -,
Di(N)) and Dy = (Di(1), *++, Dx(N)), and are the result of
the centralized Bellman-Ford iteration (2.1) when it is started
with initial conditions Dy = (e, *++, e, 0) and Dy = (0, -,
0), respectively. (The destination node is assumed to be the Nth
node.) Define the operator [see (2.1)]

Bi[D¢}= min [Dx(j)+dy)
JENU)

=Dy.1(i) (2.6

ifl =i <N,and By[D,] = Di(N). This operator is monotone
in the sense that if D < D* (i.e., if D(i) < D*(i),i=1, + "
N), then

B,|D]<B;[D*]. 2.7
The monotonicity of B; implies that
DisDii1sDgy 5Dy 2.3

M. B
e r—

P gt




EPHREMIDES AND VERDU: COMMUNICATION NETWORK PROBLEMS
and, moreover, it is easy to show that for sufficiently large &
Dy=Dy_ =Dy (2.9)

which is the vector of distances from each node to destination as
we saw in the discussion of the centralized algorithm.

In the asynchronous distributed version of the algorithm, it is
assumed.that each node i keeps at time ¢ = 0 an estimate of its
distance to destination 4,(i), and an estimate of the distance from
each of its neighbors j € N(i) to destination Ai( J), which is
simply the latest estimate received from node j. In view of (2.8)
and (2.9), convergence of the algorithm will follow if we show
that for every index k, there exists a time #, > 0 such that for all ¢
2 U

_DkSA,SDk (2.10)
and foré = 1, «++, N =~ 1
Di()sAIN=DU) 7 E N(). @i

This is shown by induction. If & = 0, then (2.10) and (2.11) hold
as long as the initial estimates of the decentralized algorithm are
nonnegative. Assuming that the induction hypothesis is true for k,
the monotonicity of B; implies that if £ = #, then

D1 (D=BiD)SBilANSBiD)=Drer (D). (2.12)

But A,(i) is a piecewise constant function of time which only
jumps at the updating times of node i, at which times it takes the
value

Ali)=Bi{Al].
Therefore, we can write
DD S A()S Dy s (i) (2.13)

where £,({) is the smallest updating time of node / which is greater
than #,. Moreover, if we wait long enough after max, £(f), not
only all the nodes will have carried out their first updates after /4,
but the result of those computations will have been communicated
to their neighbors because of the assumption that updating and
communication occur infinitely often. Hence, there exists £,y =
max; £(7) such that for ail ¢ = #,, and for all / and j

Al =A4:0)

for some s = (/) (which depends on ¢, i, and j). Thus, it
follows from (2.13) that

Dia1(N)SAN)SDeia ()

completing the induction proof and, therefore, the proof of
convergence of the distributed asynchronous Bellman~Ford al-
gorithm.

When the link delays depend on the traffic flows, it is also
possible to obtain the optimal routing that solves (2.2) in a
distributed asynchronous fashion. Gradient projection algorithms
are better suited for this task than the flow deviation method
because in the latter method a higher degree of synchronization is
required in order for the nodes to use the same step size at each
iteration. In the distributed asynchronous implementation of
gradient projection optimum routing algorithms, each node
broadcasts from time to time the values of its outgoing flows to its
upstream neighbors, who in turn pass that information on to their
upstream neighbors. In this way, the source keeps estimates at all
times of the link flows and can carry out the gradient projection
iteration autonomously based on those estimates. The first
algorithm based on this idea was due to Gallager [16], who posed
an alternative formulation to (2.2), where the unknowns are the
fractions of flow routed to each outgoing link at each node, rather

for t=t;(i)

JEN@F i=1,, N-1
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Fig. 4. Queucing model of a node Iwikusl one incoming link and two outguing
inks.

than the path flows. Tsitsiklis and Bertsekas [42] showed the
convergence of the distributed asynchronous implementation of
gradient projection optimal routing algorithms provided the time
between consecutive broadcasts is small enough relative to the
speed at which the flows generated by the algorithm change. The
approach for showing the stability of this algorithm is very
different from the proof of convergence of the distributed
Bellman-Ford algorithm where the monotonicity of the dynamic
programming mapping implied that the estimates are closer and
closer to the solution regardless of the actual sequence of
communication and computation times. The idea here is that if the
step size of the algorithm is small enough, then the flows change
so slowly with respect to the periods between communication
times that their evolution is very close to that of the centralized
algorithm which uses the unique, true value of each link flow.

B. Dynamic Routing

As mentioned earlier, there are two fundamentally differemt
philosophies to network routing: either viewing it as a “‘flow”’
problem in which the traffic of messages is modeled as a
‘‘macro’’-commodity entering the network as a single entity
(static or quasi-static routing), or as an individualized-message
path-finding problem in which the traffic is broken down to its
constituent elementary units (dynamic routing)—a dichotomy akin
to that of statistical/quantum mechanics in physics. Whereas the
first approach leads to optimization problems where time plays no
role,. the essential ingredient of the second approach is the
randomness of the time-evolution of the buffers in the network,
thus placing dynamic routing within the sphere of stochastic
control.

The most elementary instance of dynamic routing is the simple
queueing system shown in Fig. 4 which models a ncde with one
incoming link and two outgoing links. It simplifies considerably
the dynamics of the message arrival process and of the service
time characteristics and ignores processing delay. Thus, the
arrival instants of messages over the incoming link are assumed to
constitute a Poisson process of constant rate A, Upon arrival each
message is put in the buffer of one of the two outgoing links. This
action represents the ‘‘control.’’ The buffers are assumed to have
unlimited (infinite) capacity and the message lengths are assumed
to be random with exponential distribution (an obvious additional
simplification) with parameter u. The two outgoing links have
equal capacity of C bits/s. Thus, each link is modeled as a
queueing system with exponential service time distribution with
parameter pC. It is desired to characterize the optimal control
policy that minimizes the average total delay per message based
on the observations of the ‘“state’ of the system, namely the
number of messages g; and g; in the two buffers. The model, of
course, assumes that the head-of-the-line message is dropped from
the buffer as soon as the transmission of its last bit is completed.

This model, despite its simplicity, proved to be rather difficult
to analyze. For details, see [10]; it is not important to repeat them
here. It should suffice to state that the main result, which simply
requires that upon arrival a message should join the shortest queue
(with arbitrary decision in case the two queues have equal
numbers of messages), was hardly surprising. Yet an intricate
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argument on the dynamic programming equation (DPE) was
needed and there were some counter-intuitive side-results includ-
ing the refaxation of the Poisson assumption on the arrivals, and
the fact that in the incomplete state information case, the
certainty-equivalent control (i.e., send the message to the
expected shortest queue) need not be optimum unless both queues
have the same number of customers initially.

The optimality of the send-to-shortest-queue (SS) policy in the
complete state information case can be proved in a rather strong
sense. At all times, the sum (g, + g;) and maximum (max {q,,
q2}) of the number of messages in both buffers are stochastically
minimized by the SS policy in the sense of the partial order
between random variables according to which the random variable
X is stochastically smaller than Y if P{X < a] = P{Y < q} for
all a. The proof of optimality can be obtained by the method of
Jorward induction [53], whereby the desired stochastic ordering
between the queue sizes under the optimum and an arbitrary
policy is shown to be preserved at each transition.

The problem formulation of [10] is one of many related ones
(see (8], [9], (22], [24], [33], (38], [54], [55]) which are slightly
more complicated but share some fundamental characteristics
which, n fact, extend beyond the confines of the routing problem
into the areas of priority assignment, resource allocation, and flow
control. They are all Markovian decision process (MDP) prob-
lems. In the sequel we will describe a fairly general MDP that
includes the dynamic routing problem as a speciat case. In fact, it
includes almost all of the queueing control problems that have
been studied in-connection with communication network issues.
We will then outline the solution methodologies that have been
used. These include basically: 1) the derivation of optimality
conditions from the DPE associated with the corresponding MDP;
2) the use of sample path stochastic dominance arguments, and
finally; 3) the reformulation of the MDP as a linear program. We
shouid emphasize, lest the reader be unduly encouraged, that the
problems in this area are sufficiently complex, so that only modest
results can be generaily obtained despite involved arguments and
nontrivial machinery. Typically, these results characterize some
structural properties of the optimal policy. However, knowledge
of such structure is often sufficient to permit close approxirnation
of the actual optimal policy by well-founded heuristics.

Let us recall briefly what an MDP is (for details, see [30]). We
need a state description of the process to be controlled. Let S be its
state space, When in state s € S, a set A, of admissible control
actions is specified. When action @ € A, is applied, there is a
transition from state s to s’ that is governed by the probability
distribution p(s’|s, a), and which occurs after a random time 7
which is exponentially distributed with distribution denoted by
t(r]s, a, s'). Clearly, p and ¢ together describe the stochastic
dynamics of the process to be controtled. Finally, each transition
is accompanied by a cost penalty that we denote by ¢(7, s, a, 5*).

The dynamic routing problem we considered before fits in this
formulation easily. In that case, the state spaceis § = {0, 1, 2, 3,
*++}2 Anelement s = (qy, ;) € S is simply the pair of values
of the respective queue sizes. The set of actions A, is the same for
any state and consists of &; and @, where g; is the action that
assigns an arriving message to the buffer of link i. The
distribution p is of trivial form, in that the transitions are
deterministic. Assignment of an arrival to queue { augments g, by
one. Note, now, that in addition to the arrival instants, the
departure (or service completion) instants are important because
they induce state transitions as well. A departure from queue i
reduces q; by one. When a depanure occurs there is no
meaningful -control action that can be applied in this particular
problem. The exponential distribution ¢ corresponds to times
between arrivals and/or departures.? Finally, the cost rate ¢ must

4 A shght modificatton of the model of transitions, called uniformization, is
useful 1n that it introduces dummy transitions from a state into itself: thus,
some situations which introduce nonessential complications can be handled
without departure from this discrete transition time formulation.
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reflect the delay. By Little's result in queueing theory, we know
that the average delay is proportional to the average number of
customers in the queue. Thus, ¢(7, a, s, $*) can be taken to be
simply equal to (¢, + g,). This MDP formulation & _ be extended
to encompass more complicated queueing control problems.

Let us return now to the general MDP. We need to specify the
notion of a control policy and the optimization criterion. Let us
denote by &, £,, -+, the state transitions that occur at instants ¢#,,
t, -+, A policy r is a sequence of decision rules x), 72, **°,
where x, determines the choice of action at the transition time ¢,.
It can be viewed as a conditional distribution on the set of actions
parametrized by the past history of the process.

The optimization criterion that corresponds to the practical case
of expected total delay is the long-run average expected cost;
namely, if we denote by V(x, i, t) the expected cost incurred
under policy =, with initial state i, until time ¢ we consider as the
optimization criterion the value function

V(x, i) & lim inf

Vx, i, t)
- .' )
For technical reasons, however, that are well known to optimiza-
tion specialists, it is easier to establish optimality conditions if we
consider, instead, the so-called «-discounted cost, i.e.,

Ve, )= e-etavia, i, 1.
tw0

The latter converges to the former as « ~ 1 under a variety of
stationarity conditions. For technical reasons that will become
apparent in the sequel, we will also consider the finite-horizon
costs. These are defincd in a similar fashion except that we let
time extend only to ¢,, the instant of the nth transition. If we
denote by V(i) and¥(i) (and also Va(i), V,(i) for the finite
horizon cases) the values of these cost functions when « is chosen
optimally, we are led to the following DPE:

V()= inf 3 lcy @, i) +80, @, 1YV UNpG g,
a i g

or
Ve, (= inf E {e(i, a, i")+B(, a, i"YVe(iNp(i'|a, i)
a€Ay g
where

B(s, a,s’') & S: e~ dt(r]s, a, s')
and

(s, a,8’) 4 §o c(r, 8, a,s’) dt (r|s, a, ')

are the discount factor and cost values per transition, respectively.

The DPE is of fundamental importance in the study of MDP's
because the value function ¥* has the usually convenient
properties of convexity, supermodularity, and other forms of
monotonicity that lead readily to sufficient conditions for optimal-
ity. The difficulty with the analysis of the DPE is that the
optimality conditions are heavily problem-dependent and often
lead to explosively large numbers of cases to be verified
separately. This is especially true for MDP's that arise from
queueing models. For this reason, and because of additional
difficulties that arise when the state is on the boundaries (see
{22]), 1t became evident that alternative methods of solution were
needed.,

o imtpia
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One alternative method that has received attention recently and
which produced successful results in problems of queueing control
(akin to the routing problem) is a probabilistic method called
sample-path or stochastic dominance. This method bypasses
completely dealing with the value function. Instead, it focuses
directly on seeking the optimal policy. Let G be the class of
admissible policies. If we suspect that the optimal policy = has a
property-p, then we can proceed as follows in order to prove that
it actually does have that property. Let S be a subset of G, to
which we know the optimal policy belongs. We consider a subset
of policies S, C S, all elements of which have the property p. For
every x €& S,, we attempt to construct a policy # which
outperforms «. If we succeed, we must conclude that the optimal
policy belongs to S,,. In constructing % we often need to engage in
a careful reorganization of the underlying probability space in
order to align the sample paths properly, so that the comparison of
the two policies can be made for every sample path. This
procedure is full of risks and extreme care is required to avoid
faulty arguments. Note, also, that to apply this method usefully,
we must have ‘‘guessed’’ the properties of the optimal policy
correctly. Thus, at best, it is a method to verify the validity of our
conclusions, rather than a method that leads us to the right
conclusions.

Successful use of the stochastic dominance approach was made
in [52] and [50] where a problem that is dual to the problem of
dynamic routing was studied. Specifically, in a two-server
queueing system in which the two servers have unequal service
rates, we wish to determine whether and when the slower server
needs to be activated if we are interested in minimizing the usual
total expected delay function. That the optimal policy has a
threshold form (namely that the slower server must be activated
when the queue size exceeds a crucial value) was proven in {29]
via the DPE method. However, the alternative proof via the
arguments of stochastic dominance was much simpler and led to a
generalization of the result to cases of nonexponential arrivals
and/or service, that could not have been easily accomplished by
means of the DPE method.

Another successful use of the stochastic dominance methcd has
been noted in [2]. In this case the problem of optimally choosing
which customer to serve next in a single queueing systein was
considered under the constraint that each customer must begin (or
terminate) service by an individually assigned random deadline or
else it is dropped from the system. The cost criterion is then to
minimize the expected number of lost customers. It was proven
that scheduling the customer with shortest time to extinction
minimizes this cost.

Although these problems differ from routing, the model
structures are quite similar, and it has been observed that, usually,
queueing control problems with such structural similarities can be
studied equally successfuily.

The third method, which was first used in [38] in the study of a
specific queueing control problem, and which has been broadly
extended recently in {51], is.the linear programming approach.
Almost any queueing control problem that can be formulated as a
MDP (thercfore the problem of dynamic routing, as well) can be
converted to an equivalent linear program (LP). The advantages
of this conversion are that it is problem-independent and it leads
occasionally to successful study of semi-Markov decision prob-
lems as well, Furthermore, it facilitates considerably the charac-
terization of optimal solution properties. Here is how this
equivalence can be demonstrated.

Let us concentrate on an MDP under a finite-horizon, dis-
counted cost formulation.> We shall-consider a queueing model
with state dynamics given by

Xiee 1 =Xe+ EstZeers

3 The reason that we cannot work directly with infinite horizons is the
ibility of so-called duality gaps in linear programming theory with
infinite-dimensional variables.

935

Here, x; denotes the state at ¢, (the instant of the kth transition), £,
represents that transition, and 2, represents the control action at
that transition. The transition £, can represent an arrival or a
departure as an increment of the state. The control 2, is
conveniently defined to enable (z; = 1) or disable (2, = 0) a
transition. For example, in the routing model discussed at the
beginning of the section, the state is equal to a two-dimensional
vector of queue sizes, and the transition corresponding to sending
an arriving message to the first queue would be represented by &,
= [1 0}7..Indeed, a variety of queueing control problems (in fact,
the vast majority of those that have been considered in connection
with communication network problems) can be so represented.

Note that the crucial aspect of this state equation is the linear
dependence on the controls. Note also that usually the cost
function is linear in the state (since the usual cost criterion is the
expected delay which is coupled to the queue sizes, and hence the
state, by Little’s result). Consequently, the cost is linear in the
controls. The minimization of the cost over the set of control
trajectories is constrained since the state equation must be satisfied
and the state must always belong to an admissible set (typically, a
set of vectors with integer-valued coordinates belonging to given
ranges). Thus, the constraints are also linear in the controls, and
the problem is easily formulated as an LP. There are, however,
two points that require attention. First, the controls are integer-
valued, i.e., 2 € {0, 1}. Second, in the MDP the vectors £, are
random and depend on past history.

The first problem is taken care of in one of two ways: by
construction or by use of a property of the constraint matrix of the
linear program, called unimodularity. The construction method
involves using a noninteger optimum control whose quantized
version satisfies the MDP optimality conditions (see [38], {51] for
details). The use of unimodularity involves a well-known result in
the theory of integer linear programming (e.g., [34]): if the
constraint matrix of an LP is integer-valued and totally unimodu-
lar (i.e., each of its sub-determinants is +1, — 1, or 0), then all
the vertices of the feasible polytope are integer-valued. Therefore,
no further restrictions are needed to guarantee that the solution of
a conventional LP will result in the integer-valued optimal
control. Fortunately, in many queueing problems of interest
(including the dynamic routing problem), the constraint matrix is
indeed totally unimodular. .

The second problem is easily taken care of by thinking of the
z;’s as functions from the sample space I to the action space.
Thus, the cost criterion can be written as a functionai on the
underlying probability space.

Let zx(wy) represent the control action at the kth transition,
where w, denotes the random *‘history’’ until the kth transition.
We have

Xes 104 1) = Xe(0p) + Zes 1 (0k 4 1) Ex a1 (@p 1)

Let S and Z be the set of admissible states and controls,
respectively, The B-discounted, n-step, expected cost under
policy z and initial condition x is given by

n=1t
J8(x, 2)=E; 3, B*L(z)
k=0

where
L(z)=cTx,+d Tz

(c and d denote constant column vectors). This is a cost function
that is adequately general. For example, in a pure resource
allocation problem without blocking or rejection of messages we
have d = 0, while in pure blocking problems we take ¢ = 0. The
state equation, after repeated iterations, yields

k
xe(we)=x+ 3, Zi(wgilwy), k>0
Jnl
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Therefore,

a1 k
Ji(x, 2)=E; 3, B {crx+c7' > z,E,--dezk]

k=0 Jwl

. . . .
=l_ﬁ cTx+ Ex E B8 {E CTZjEj'i-dTZk} .

- k1 =l
But
E(z) =, 2(we)Pr(w).
ok
Hence

1-g"

=5 T+ 2 2 velanzdwr)

k=l wp

JB(x, 2)=

where v, (w) is a known function that depends on Pr{(wy), ¢, &x,
and B8*. Consequently, the MDP is equivalent to

min E 2 Vi (k) Ze (@)

% okmlowg

subject to

k
<x+ > z,(w,-)sj(w,)> €S

i=1

which is a conventional LP where the initial condition plays the
role of a parameter, the sensitivity with respect to which can be
studied by the well-developed theory of sensitivity analysis of
linear programming [15].

In conclusion, we see that the MDP is converted to an
equivalent LP under very mild conditions that are usually satisfied
by dynamic routing and other queueing control problems. Thus, a
third alternative methodology becomes generally available for the
study of these problems. Whether to choose from the arsenal the
DPE approach, or the LP method, or stochastic dominance tools,
depends on the problem and on the, as yet undeveloped, intuition
that the investigator should possess.

. MuLTIPLE-ACCESS COMMUNICATIONS

The communication networks considered in the discussion of
routing problems in Section II consist typically of a set of nodes
connected by point-to-point communication links. Each of these
links viewed in isolation can be modeled as a classical communi-
cation channel with one sender and one receiver. In this section,
we consider multipoint-to-point communication links where sev-
eral transmitters share a common channel. Multiple-access
channels are the basic building blocks of radio networks, satellite
communication, and local area networks, and during the last 15
years have attracted the attention of many communication.
information, and control theorists.

There is a wide variety of strategies to divide the *‘resources’’
of a communication channel among several geographically dis-
persed transmitters. The simplest methods are those that assign a
permanent independent sub-channel to each transmitter (e.g., in
frequency division multiple access and time division multiple
access); these strategies are easy to analyze and are widely used in
practice in situations where the users need to transmit at fairly
steady rates. If the transmitters are bursty (i.e., the radio of peak-
to-average rate at which the need to transmit is high) those static
methods are inefficient since most of the time the channel is
underutilized while demand (and induced delay) accumulates at

busy terminal locations. Dynamic channel sharing strategies
overcome this problem by atiocating channel resources on an on-
demand basis. Consistent with the overall spirit of this paper, our
goal here is not to review this vast topic, but rather to demonstrate
how control theory can play a useful role in its study. Here we
wish to single out two multiple access strategies: random access
and simultaneous transmission, which are broadly representative
of dynamic channel sharing systems and in which control theoretic
concepts have played a pivotal role.

In random access communication, the conceptual allocation
model is addressed without an effort to exploit the signaling
degrees of freedom and the micro-structure of the transmitted
messages. For this purpose, a crude channel model is considered,
that achieves this separation of the *‘macro’’ from the *‘micro”
problem. In simultaneous transmission systems, however, a more
refined viewpoint is adopted, by taking the realities of the medium
into account, modeling them, and exploiting them.

A. Random-Access

The object of interest here is the so-called collision channel
model, in which messages (called packets) require one time unit
(called slot) for transmission and are sent by a population of users
who are synchronized so that their slots coincide at the receiver,
but are otherwise uncoordinated and unaware of which and how
many users have packets to transmit. If two or more packets are
simultaneously transmitted, it is assumed that the receiver is
unable to recover any of the messages, and they have to be
retransmitted in a future slot. In the ALOHA algorithm, which
was developed in the early 1970’s [1] at the University of- Hawaii
and marked the beginning of the area of random-access communi-
cation, each packet that has been unsuccessfully transmitted
before is transmitted with probability p in the next slot. New
packets which have not attempted transmission before are
transmitted with probability either 1 or p depending on which
version of the ALOHA algorithm is used. In our discussion, we
will assume the latter choice.

Under these conditions, and assuming that the number of newly
generated packets in each slot is a random variable (with mean \)
independent from slot to slot, the number of packets awaiting
transmission (called backlog) is a Markov chain taking values in
{0, 1, 2, - -+}. The central problem is to investigate under what
conditions the backlog Markov chain is ergodic, i.e., it is stable in
the sense that it reaches a steady state in which the periods
between the times when there are no packets to transmit are not
too infrequent (they have finite expected value)., The transition
probabilities of the Markov chain are parametrized by the rate of
arrival of new packets A and the retransmission probability p.
Whereas M is fixed and given, p is chosen by the transmitters.
Hence, we are dealing with a fairly simple controlled Markov
chain whose control space is the interval (0, 1]. In the original
ALOHA algorithm, the control p remained constant and common
to all transmitters regardless of the information acquired by
listening to the channel, thereby resulting in the open-loop control
of the Markov chain. Depite several “‘proofs”’ of the stabilitiy of
ALOHA published during the 1970’s, neither the actual system
built in Hawaii nor the ideal Markov chain model were stable. The
reascn why the open-loop system is unstable can be easily
understood by considering the backlog drift, d(n), which is
defined as the expected increase in the backlog over the next slot
when the current value of the backlog is equal to n. It is easy to see
that the backlog drift is given simply by the expected number of
new packets pes slot minus the expected number of successfully
transmitted packets in the next slot, i.e.,

d(m)=A~[np(1-p)*~'}). G.n
The drift quantifies the expected evolution of the Markov chain

from each ‘state, and therefore it is a valuable tool in analyzing the
stability of the chain. For any p € (0, 1] the term in brackets in
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(3.1) goes to 0 as n — oo, and hence, the drift is positive and close
to A for sufficiently large backlogs. This implies that when the
backlog is large it tends'to grow, thereby eliminating any hope for
stability. Using standard results, this reasoning can be formalized
straightforwardly to prove not only the instability of the open-loop
system [11] for all values of A and p, but the fact that the backlog
goes to infinity with probability one [25], [35], [40].
Fortunately, the system can be stabilized by closed-loop
control. Let us examine first the case of complete-state informa-
tion, i.e., each station is informed at the end of each slot of the
current value of the backlog and chooses the retransmission
probability on the basis of that information. As far as stability is
concerned, the best choice of the retransmission probability p is
the value that minimizes the drift because that results in the
maximum possible arrival rate that guarantees stability (called the
throughput). It follows from (3.1) that the optimum value of p is

p)=s,  n=1,2, (3.2)
and the resulting drift is
1 n=1
dxn)=A- [l—;] 3.3)

which is negative for n > 1 when A < e, and is positive for
large backlogs when A > e~!, Therefore, the throughput of the
closed-lcup system with complete state information is e~! =
0.368. However, the relevance of complete state information
feedback is rather limited in practice. This is because the
instantaneous value of the backlog is available to each station only
if there exists so large a degree of communication among the
transmitters that much more efficient algorithms than ALOHA
can be used.

The case of partial state information is the problem of interest in
practice, since the only feedback available to each station is the
outcome (collision, success, empty) of the transmission in each
slot. The analysis of the controlled system with partial state
information was pioneered by Hajek and Van Loon [20] who
proposed a recursive updating law of the retransmission probabili-
ties as a function of the channel outcomes. This feedback policy
was shown in [21] to attain the throughput achievable with
complete-state information, namely e~'. Those papers and subse-
quent works have referred to the problem as decentralized
control of ALOHA, motivated by the fact that each station
chooses the retransmission probability autonomously based on the

channel feedhn  “owever, it is useful to recognize that the
problem boi’ lo (centralized) stochastic control with one
decision m and incomplete state information because all

stations are constrained to use the same retransmission probabili-
ties.

We will review here the proof of stability of the following
certainty-equivaience closed-loop control:

p(i)=7 (3.4
where 7 is an estimate of the backlog updated according to
ﬁkn___{r{\ax{l,ﬁk+a} kih slot is idle §
g+ B kth slot is success or collision.
(3.5

The throughput attainable with this feedback law depends on the
constants ¢ < O and B > 0. As we will see, there exists a set of
choices for those constants that results in throughput equal to e~".

Unlike the case of complete-state information, the proof of
stability is not straightforward because now it is the two-
dimensional process formed by the backlog and its estimate {(#1,,

937
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Fig. 5. Drift of (backlog, backlog estimate) Markov process for decentral-
ized control with @ = =1.48,8 = 0.8, and A = 0.33.

fix)}& (rather than the backlog itself) which is a Markov process.
According to (3.4) and (3.5) the drift of this Markov process is
given by

El(Micyrs fikar) = (ne, Ael(ng, )=, $))

=<)\—-g- [l—.-:;] ”-l, B+{max {a, I =5} -8) [l—-%] n)

4 (d(n, 5), c(n, 5)). (3.6)

Contrary to what we saw in the case when the state is known, it is
not true that the backlog drift is negative for sufficiently large
backlogs. As we can see in Fig. 5, if the estimate is far from the
true value, then the backlog may actually tend to increase,

However, at every point in the state space the tendency of the
process is to approach the diagonal where the estimate is equal to
the true value of the backlog. Furthermore, as Fig. 5 or the
analysis of the perfect-state information case shows, the drift
along the diagonal is negative. Such a behavior is a strong
indication of the stability of the controlled Markov process.

This can be proved using a powerful sufficient condition found
by Mikhailov [31] for the stability of a Markov process taking
values in R* X ®*, In essence, Mikhailov’s condition states that
it is enough to restrict attention to those points of the state space
where either the backlog or its estimate are large and at which the
drift is radial, i.e.,

d(m,s)_n
cm,s) s’

then, it is sufficient for stability that the drift point towards the
origin at those states. To see that this condition is indeed satisfied
for our system, we compute first the asymptotic drifts along the
radius {(n, s): n/s = ¢} for ¢ € [0, o)

d(¢)=’l}§g d(ys, s)=A—ye-¥ (3.7a)

c()=lim c(ys, s)=B+(a—B)e . (3.Tb)

It can be checked using (3.7) that if the constants « and 8 in (3.5)
are chosensuchithat 8 > 0.23hand A — e~! = 8 + (a - B)e~},
then the drift is radial only at ¥ = 1 (cf. Fig. 5), where it points
towards the origin as longas d(1) = A — ¢~' < 0,
Mikhailov’s sufficient condition can be justified constructing a
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stochastic Lyapunov function to prove the stability of a Markov
process {x;}, with state space ®* X {&*. To that end, it is
advantageous to switch to polar coordinates (r, ¢) and to define
the radial drift o(r, ¢) as the projection of the drift along the
direction of the point (r, ¢) and the tangential drift p(r, ¢) as the
projection of the drift along the direction perpendicular to (r, ¢).
Denote the asymptotic drifts 6(¢) = lim,.. 6(r, ¢) and p(¢) =
lim,.q p(r, ¢) and define the function

V(r, ¢)=re(¢)

where

L} x
B(d)=exp (—c So #(v) du> 6 € [0,5] :

Note that ¥(r, ¢) is a candidate Lyapunov function because it is
positive outside the origin and V(r, ¢) = o as r = oo,
Furthermore, it can be shown {31) that the asymptotic drift of the
candidate Lyapunov function is equal to

lim E[V(Xke1) = V(x| %= (r, $)]= $(@)O(®) - Cu?@). (3.8)

Now, under Mikhailov’s condition, the asymptotic drifts are
assumed continuous on [0, x/2] and 6(¢) < ¢ for any phase such
that u(¢) = 0 (i.e., whenever the drift is radial it points towards
the origin), thcrcfom the constant C can be chosen large enough
so that the left side of (3.8) is upper bounded by a negative
constant. This implies that V(r, ¢) is indeed a stochastic
Lyapuanov function and therefore standard results on the stability
of stochastic systems [27], [45) can be applied to show the
stability of the system.*

In some multiaccess environments, the receiver can indeed
dermdlﬂatexdnblyoncormpa'kusmnmmepmmof
other interfering packets and the collision channel model no
longcrappli&stotbosem.mmuhsmviewedindﬁsscc&m

be generalized -2 general channel with mudtipacket
receptwnczpabﬂny to show that: l)thcdnmgiqnofopm-bop
ALOHA is cqual to the limit of the expected number
mfuﬂymccxvedpacmpaskxaﬂtbwkbggmn
infinity [17]; and 2) the throughpat of closed-loop ALOHA (with
cither complete or partial stae information) is equal to the
mxmmnovcruofﬂmcxpe@cdmnimofswmfnﬂymm
packets per slot when the number of transmissicos is a
Poisson random variable with mean v [18].

Returning to the case of the collision channel, the next natural
step is to drop the main restriction in the ALOHA algorithm,
namely, that all stations use the same retransmission probability.
This is done in a class of random-access algorithms referred to as
collision resolution algorithms which are charactemcd by the fact
that not only are all blocked packets eventually retransmitted
successfully, but all users eventually become aware that these
packets have been successfully retransmitted. Contrary to the
ALOHA algorithm, the decision whether or not to transmit a
packet takes into account the previous history of attempted
retransmissions of that particular packet. The introduction of this
new dimension into the problem renders Markov chain tools
considerably less useful than in the foregoing analysis and
converts it into a very difficult decentralized stochastic control
problem, for which the optimum throughput remains unknown®
despite many efforts.

4 Another choice of stochastic Lyapunov function for the specific case of
decentralized control of ALOHA can be found in (43].

S The best known algorithm has been shown to achieve a throughput of
0.488 using Howard's policy iteration for sequential infinite-horizon problems
(32] or by reduction to a simple optimization problem [48]. On the other hand,
it is known that the optimum throughput is upper bounded by 0.568 [44].
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B. Simultaneous Transmission

In contrast to random-access communication systems, in
simultaneous trarismission multiple-access systems, the transmit-
ters send their messages simultaneously, independently, and
without monitoring the channel in any way. The most common
type of simultaneous transmission system is code-division multi-
plexing, where each user modulates a preassigned signature
waveform known by the receiver.

Specifically, we will assume that in order to send the message
{be(i) € A} (e, a string of M symbols drawn from a finite
set A), the kth user transrmts

M—~1
> bel)si(t=iT)

in0

where {s(£), 0 < t = T} is the waveform assigned to the kth
user, and 7 is the symbol period. Then the demodulator receives
ghe sum of the signals transmitted by the K active users embedded
in noise

K M~-1
(=Y, Y, be(Ddse(t—iT-n)+n(1) (3.8)

kul in0

where the offsets 7, < 1; € [0, T') model the fact that the users
do not syndnonizc their transmissions. Then the task of the
receiver is to recover the transmitted information strings
{bt(l)},_o .1~ Following {47] we will show how to obtain an

demodulator via dysamic programming. First,

dmotc the MK -vector
d={dv,ix=b:(i), k=1, -+, K, i=0, -+, M~ 1}
and the multiuser signal in (3.8)
M=t
S(t, )= :§1 ,‘?1, b(D)se(t~iT—1) = § diz() (3.9)

where i ulf) = 5(t ~ iT — 7).

A reasomable criterion foc foc demodulating the information carried
in S(¢, d) wpon obnerv:m of r(¢) is to select the MK -vector d
that best explains the received waveform in the sense of
mimmizing the encrgy of the corresponding noise realization,
Le.,

min_§5(, d)— (. (3.10)

Ifﬂwmnscnlsanswhxtcand&um,dmﬂnscntemnmdls
in maximum likelihood decisions. Equivalently, the objective is to
find the vector that solves

max O(d)

3.11)
dEAMK

where

o=2{ swayrwa-| s, dya. (.12

Since the maximization in (3.11) is over a finite set, we could solve
it by the brute-force method of evaluating Q(d) for each possible
argument. However, it is possible to decompose Q(d) in a
sequential fashion that lends itself to efficient optimization. From
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(3.9) it is immediaie to write the first integral in (3.12)
sequentially

® MK
" st v at=3, a, (3.13)
- P :
where
Y= S: z(H)yr(e) dt. (3.14) .

This implies that the objective function (3.12) depends on r(¢)
only through the quantities {y;}}%%, which are obtained by
correlating () with each of the signature waveforms during each
symbol epoch. In order to find an explicit expression for the
second integral on the right-hand side of (3.12), which is the
énergy of the multiuser signal, we will denote

RU, D)= S:‘ (D z(0) dt. (3.15)

It follows immediately from the definition that these coefficients
satisfy the following properties.

1) Rk + iK, k + IK) = [Tsi(t) & w,.

2) Rtk + iK,n + iK) = R(k, n) forall i.

3) R(j, 1) =0unless |j ~ /] < K.

The first property indicates that each of the diagonal elements
of R(i, j) is equal to the energy of one of the K assigned
waveforms. The second and third properties can be illustrated by
referring to Fig. 6 which represents the symbol epochs of three
asynchronous users sending strings of M = § symbols. Each
symbol period in Fig. 6 is labeled with the index of the
corresponding component of the vector d. The second property
indicates that the cross-correlations between two signals depend
only on their relative location (e.g., R{4, 6) = R(13, 15) in Fig.
6) and the third property states that each symbol only interferes
with 2K — 2 symbols of the other users [e.g., in Fig. 6, dy =
by(2) only overlaps with d; = by(2), dz = by(2), dio = 5,(3), and
diu = by(3)). It follows from these properties that the coefficients
in (3.15) can be obtained from the K x K matrix {R(k,

n)}k X, whose diagonal elements correspond to the energy per
symbol of each user and whose off-diagonal elements correspond
to the cross-correlations between the signature waveforms of each
pair of users. Using (3.15), the foregoing properties, and letting
x(j) € {1, ---, K} be the modulo-X remainder of j (i.e., for
some i, j = x(j) + iK), we can write

- MK MK
" saya=3'S adr(i, 0
- j=l =l

MK J=1
=3 d [w,(,-,+2 S 4Ry, 1)]

J=1 Iuj=K41

MK K-1
=Y 4 I:Wx(})'*'2 > di-ngupy(K=n)

jml nwl

(3.16)
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where gi(m) = R(k + K, k + m). Putting together (3.12),
(3.13), and (3.16) we see that we can express 9(d) as a sum of
MK terms, each of which depends on K components of d and such
that consecutive terms depend on the same components but one.
Specifically, we can write

MK

Qd) =3, Mx;, dj) (3.17)
=l
where
N(x, W)= ul2y;+uw, = 2xTg )l (3.18)

and ¥; is the state of a shift-register K — 1 dimensional system

x];]:[xi-#l(l)’ St xj+l(K- l)]=[xj(2)) Tty xj(K" 1), dj];

x=0. (3.19)

It is now apparent that the solution to (3.11) entails solving a
finite-horizon deterministic optimal control problem with
additive costs per stage for the linear system in (3.19), and with a
finite admissible control set 4. Thereforé, optimum multiuser
demodulation is equivalent to a shortest path problem in an M-
stage layered directed graph, where at each stage there are 44!
states. This optimization problem can be solved by dynamic
programming (e.g., [7]) in backward or forward fashion. In
practice, it is necessary to demodulate the transmitted symbols in
real-time, and since M is usually a very large integer, it is not
feasible to wait until all the observables {y,}} have been
obtained before starting to make decisions. Therefore, a subopti-
mum version of the forward dynamic programming algorithm is
adopted in practice whereby each decision is based on the paths
corresponding to the cost-to-arrive function computed a fixed
number of steps ahead. This real-time version of forward dynamic
programming is known in communication theory as the Viterbi
algonthm [12], and was originally devised (without resorting to
the dynamic programming framework) for decoding convolu-
tional codes. The maximum-likelihood criterion used in (3.10) is
not the only possible optimality criterion. For example, if the
objective is to minimize the probability of error for each user,
then the multiuser demodulator uses a brckward-forward
dynamic programming algorithm [49] whereoby optimum deci-
sions are based on the independent computation of a cost-to-go
and a cost-to-arrive function.

1V. OTHER PROBLEM AREAS

Routing and multiple access are not the only problem areas in
the field of communication networks which control theory can
help formulate, study, and solve. We have deliberately chosen to
confine our attention to these two areas in order to get across in a
concise manner our belief that the field of communication
networks offers a rich selection of applications for control theory.
We would feel remiss, however, if we did not even make an
attempt to provide a taste of some of the numerous other design
and operation issues that, again, bring forth control systems
concepts and techniques. For this purpose, and with a conscious

effect not to expand in depth but only to describe, we will mention.

two areas from point-to-point networks and one from radio
networks. The first two concern flow control and integrated
switching, respectively, while the third concerns the problem of
scheduling transmission in multihop networks. /nlike the cases of
routing and multiple access, these areas have not yet fully
benefitted from the use of control theoretic approaches although
such approaches-would be very well suited to them indeed.
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A. Flow Control

A stark reality in the design of networks is that despite the
reduction of the cost of memory, storage at each node is going to
be finite. Coupled with another reality, namely that data transmis-
sions on the whole continue to be bursty, it implies that buffer
overflow may occur and, along with it, congestion and deadlocks.
Flow control is the name we use to describe the collection of
measures taken to avoid buffer overflow and highly congested
nodes in the network. Congestion and saturation are often the
consequences of diverging, unstable behavior. Thus, it is of
interest not only to optimize over possible flow control strategies,
but to determine their robustness against disturbances or modeling
inaccuracies that may lead to unstable behavior.

The control variables in flow control problems are admission
(or blocking) probabilities for messages or sessions at the source
node. In practice these are often implemented in terms of a bang-
bang control strategy known as window flow control whereby
input ports are allowed to continuously inject messages into the
network at the full desired input rate until the number of
unacknowledged® messages exceeds the value of the *‘window
size" w. A simple, yet unanswered question is, what should the
value of w be?

Previous efforts to use control theory tools to analyze optimal
flow control problems include [28)] and [46] where the optimality
of window flow control is proved within the domain of a
simplified model, and [39] where dynamic programming value
iteration techniques are used to characterize optimal flow control
performance. An alternative approach to the flow control problem
is to subsume it into the static routing problem considered in
Section 11-A [19]: suppose that for every source-destination pair a
fictitious direct link is added between them. We can then interpret
the blocking action of a flow control procedure as a diversion of
the blocked portion of the traffic through this fictittous link to the
destination. Thus, we can consider that no traffic is blocked. Of
course, in order-to discourage the use of this . ctitious link we
must augment the overall delay cost function with a term that
penalizes appropriately the use of this link.

B. Integrated Switching

A revolutionary development in the field of networks whose
implementation is currently under way is the combination of the
capabilities of what have been separately developed in the past and
called voice networks and data networks. Voice is a commodity
that must meet different requirements than data. For example,
speech signals have inherent redundancy that make them quite
robust with respect to occasional errors or deliberate compres-
sion. At the same time, except in applications of voice messaging,
speech signals occur in the context of reai-time conversations and,
as such, must encounter short and, more importantly, constant
delay. On the other hand, data must preserve their integrity and
cannot tolerate errors, however, long and vanable delays can be
often tolerated.

How does one design a single network that can handle such
dissimilar commodities with automated procedures? The natural
course of events in the last decade or two was to attempt to force
data on primarily voice networks or to let voice ride on what were
mainly data networks. The literature is full of ideas for baseline
integration that are mostly heuristic and difficult to analyze. An
attempt to formulate the problem of integrated switching as an
optimization problem was presented in [50]. In it simplest form
the model is as follows: consider a single node in the network with
a single cutgoing link on which- incoming voice calls and data
packets must be multiplexed. Let W be the bandwidth of the
outgeing link. Let V be the bandwidth required for the continu-
ous, uninterrupted accommodation of a single voice call. Let,

8 Note the implicit assumption of delayed feedback information from the
destination to the source node.
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Fig. 7. Switching-type optimum policy for integrated switching.

therefore, N = W/V be the maximum number of calls that can be
assigned dedicated circuits simultaneously if no data packets are
transmitted. A voice call can either be accepted (and assigned the
necessary bandwidth ¥7) or blocked. Data packets can be stored in
a buffer facility. If, at a given time, there are i calls in the system,
the data packets can be served at the full rate corresponding to the
remaining bandwidth W — V. Such a switching architecture
represents what has been called the movable boundary idea in
integration. A natural MDP can be simply formulated as follows:
choose the control action of blocking or accepting a call upon
arrival in order to minimize the weighted sum of the average data
packet delay and the call-blocking probability. If we assume that
both arrival streams (voice calls and data) are independent Poisson
processes, that the call holding time is exponentially distributed,
and that the message lengths are likewise exponential, we can
apply the technique described in Section I of converting the MDP
to an LP and show that the optimal policy has the useful
switching-type form. Namely, if i is the number of ongoing calls
and j the total number of data messages at the node, the optimal
control action should be to block the call in region B of the state
space as shown in Fig. 7 and to accept it in region 4.

C. Link Scheduling

Let us now turn our attention back to the radio network
environment. In Section II the multiple access channel was
considered and a number of difficult but interesting control
problems were identified. Throughout that discussion, it was
assumed that all terminals are within a single transmission hop
from the destination. In many radio networks, however, this is not
the case. Messages need to be relayed via intermediate nodes to
their final destinations. Thus, the familiar problem of routing
arises again, except that this time there is a new twist to it. In
point-to-point networks, transmissions between different node
pairs can take place simultaneously because there are dedicated,
**hard-wired’’ links between the corresponding nodes. In a radio
(or, more generally, in a2 muitiaccess/broadcast) environment, if
the nodes are densely connected, not all transmissions can take
place simultaneously (unless separate dedicated channels or
simultaneous transmission signaling techniques (Section ITI-B) are
used). They must be scheduled in time to avoid the interference
that would occur otherwise.

It becomes evident that the mere fact that the transmission
among a group of nodes must take place one at a time raises the
question whether the intended transmissions are routing-wise
optimal any more. Several versions of this problem have been
studied [3], [23], [36]. In every case and even if the routing
problem is sidestepped, we are led to hard combinatorial
optimization. problems where questions of computational com-
plexity and distributed implementation are of primary importance.

V. CONCLUSION

It should be clear by now that the theory of linear and nonlinear
optimization, dynamic programming, stochastic control, stability
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analysis, and distributed control have found interesting applica-
tions arising in the analysis and design of communication
networks, Unlike other complex systems that have been success-
fully studied by control system theorists in the past (such as
chemical plants, flexible aircraft, robot systems, etc.), communi-
cation networks stand out in that the commodity to be controlled is
information (including its transmission, storage, processing, etc.).
This feature, perhaps, misleads and intimidates those who do not
feel sufficiently inter-disciplinarian to tackle these problems. We
| hope that by having selected to present a few examples in which
concrete, purely control-theoretic problems can be formulated and
have been (or can be) studied successfully, we may encourage
attention by the control community to this application area that is
especially rich in new challenges.

As stated from the outset, we did not attempt to survey or

) completely cover the multiple coatrol facets of communication
/ networks. The collection in this paper merely represents an effort
} to illuminate a few selected problem areas and to show how
\ control techniques apply to them.
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Optimal Decentralized Control in the Random
Access Multipacket Channel

SYLVIE GHEZ, STUDENT MEMBER, IEEE, SERGIO VERDU, SENIOR MEMBER, IEEE, AND
STUART C. SCHWARTZ, SENIOR MEMBER, IEEE

Abstract—A decentralized control algorithm is sought that maximizes
the stability region of the infinite-user slotted multipacket chanunel and is
casily implementable. To this end, the perfect state information case
where the stations can use the instantzneous value of the backlog to
compute the retransmission probability is studied first. The best through-
put possible for & decentralized control protocol is obtained, a3 well as an
algorithm that achieves it. Those results are then applied to derive a
control scheme when the backlog is unknown, which is the case of
practical relevance. This scheme, based on a binary feedback, is shown to
be optimal given some restrictions on the channel multipacket reception
capability,

1. INTRODUCTION

OST studies on random access communications rely on the
'¥ Lassumption that when two or-more packets overlap, all the
information that was sent is irremediably lost, hence the need to
repeat all transmussions at some later time. This is actually a
pessimistic point of view, since there are many examples of
random access systems where one or more packets may bs
successful in the presence of other simultaneous transmissions. In
order to represent such random access systems, a model for a
channel with multipacket reception capability has been developed
in [6]-[8). We consider a slotted channel with an infinite
population of users, and we assume that the probability of having
k successes 1n a slot where there are 2 transmissions depends only
on the collision size n

enx= Pk packets are correctly received|n are transmitted)
(nz=1,0<ksn).

We define the reception matrix as

€10
€0 €, e 0
E= €n0 Ept €an :

.

.

This model can be applied to chanuels with capture [1]-{3], [10],
{16}, (18§, {20}, [23], {26], {28], [34] and to systems using
CDMA (22], (241, {29]. It is also relevant for many other
applications, such as systems with multiuser detectors {33] or, for
instance, the channel studied in {17], {31]. For more details about
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IEEE Log Number 8930788,

this model, the reader is referred .0 [6] and [8]. Denoting by C, =
Z7 .1 ke the average number of packets correctly received in
collisions of size n, we assume that the limit C = limy.e C,
exists, as is usually the case with models of practical interest. It
has been proved in [8] that the Aloha random access algorithm has
a maximum stable throughput 7o = C in the multipacket channel.

Decentralized control strategies have been shown {11}, [12],
(191, [25], [30] to stabilize the slotted Aloha algorithm in the case

of the usual collision channel, hence, it is reasonable to expect that
when those strategies are used in the multipacket channel, the
resulting throughput will be higher than n,. We consider schemes
of the form

Dn=F(S;)
Sn+1=G{(Sny Zy) 8y

where p, 15 the retransmission probability in slot n, S, is an
estimate of the backlog X, at the beginning of slot n, and Z, is the
feedbacx at the end of siot #. The number of new packets arriving
during slot n, A, is assumd to form a sequence of i.i.d. random
variables with probability distribution P{4, = k] = Ak = 0),
such that the mean arrival rate N = Z%_ n\, is finite. Each of the
Ap-y new packets that arrived during slot n — 1 is transmitted in
slot 7 with probability p,.

As 1n the case of conventional channels, it is useful to study first
the case of control with perfect state information where the value
of the backlog is given to the users prior to the selection of the

retransmission probability. To keep track of the exact value of the

backlog, a central controller is usually necessary, which is an
unreasonable requirement for most practical random access
channels. However, the study of the perfect state information case
allows us to determine an upper bound to the best throughput 5,
achievable by any decentralized control of the form (1), and
suggests a simple implementation. Those results are in turn helpful
to derive control protocols in the case where the backlog is
unknown. This is done in Section Il where we consider a backlog
estimate which is recursively updated using the binary feedback
empty/nonempty. In addition, it is assumed throughout the paper
that each station is informed when its packet is successfully
received. It is proved that provided a certain condition on the
reception matrix holds, the throughput achievable with this type of
feedback 15 the same as the perfect state information throughput
This condution is verified for most multipoint-to-point channels of
practical interest.

In a paper whose translation appeared only very recently {19]
(after our work {7]), Mikhailov has derived sufficient conditions
for stability and instability of two-dimensional Markov chains.
Although this was meant to be used for decentralized control
schemes 1n the usual collision channel, this approach is powerful
enough to be applied to the multipacket channel. In Section IV we
show by using Mikhailov's result that the scheme presented in
Section HI is stable under weaker assumptions. However, only a
weaker form of stability can be proved in this way.

0018-9286/29/1100-1153501.00 © 1989 [EEE
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II. CONTROL OF THE MULTIPACKET CHANNEL WITH PERFECT
STATE INFORMATION

In this section we assume that all the users know the value of X,
at the beginning of slot n, and we let the retransmission
probability be a function of the exact value of the backlog, i.e., pa
= F(X,). In this ideal case, the system is much simpler to
analyze than in the general case (1) since (X,)az0 is @ homogene-
ous Markov chain. Our goal is to determine the optimal control
function F* that yields the largest ergodicity region, and the
corresponding throughput, denoted by 7,. For instance, it is well
known [4] that for the usual collision channel with the access rule
in effect here, F*(X,) = 1/X, is the retransmission probability
that minimizes the drift at each step, resulting in an ideal

A throughput of 5, = e~".

First note that all the results herein are valid provided that the
backlog Markov chain (X, S,),=0 corresponding to a control (1)
is irreducible and aperiodic. It can be easily checked that for both
access rules considered in this paper (see below), as well as all the
algorithms, a simple set of sufficient conditions for irreducibility
and aperiodicity is

g a) ho#0

b) Ao+ E Me€an <1

nw}

c) 00

studied in [6]. The theorem below gives the best throughput
#ipossible for a control protocol (1).

Theorem 1: There exists a retransmission probability p* that
minimizes the expected backlog increase when the backlog is
equal to 2. .

With such a retransmission probability, the system is stable for
A < 1. and unstable for A > 3., with

Proof of Theorem 1: The proof is based on standard drift

analysis techniques. (X,)»0 is 2 homogeneous Markov chain
which evolves according to

gwhich are analogous to the conditions for the open-loop system

xll

[- -
ne=sup e~* 31 C, ~-

x=0 nwl

X =X+ A- 2, 2
where Z, is the number of packets successfully transmitted in slot
t. The system is defined to be stable if (X)),»¢ is ergodic and
unstable otherwise. Let d, be the drift of X, at state n: d, =
ElX+1 = X)X, = n]. We have 0 < 3, < X,, and if we denote
by p the retransmission probability used in slot ¢, then forn = 1,
fée probability of having k successes is given by

n
PE=KX=n]=Y
Juk

(;)p’(l-p)""/e,-, (Isksn). (3)

[t then follows from (2) that the backlog drift at state # = 1 is
ziven by

n n
amr-3 63 (1) pa-pria
=k

kol

a3 (

n
; 4
AV @

>p’(1 ~p)"IC
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which becomes d,(p) = N — t,(p) if we define £,(p) to be the
average number of successes given the backlog n and the
retransmission probability p

(D)=, (;’) p/(1~p)*iC;.
J=l

Since f,( p) is a polynomial on the compact [0,1], it achieves its
maximum and we can define

&)

*=arg max ,(p)=arg min d,(p).
PEI0.) PE(0.]

We now proceed to compute the limit of the drift when the
retransmission probability p¥ is used. We show that

-] x"
lim t,(p*)=sup e~ C, —=sup t(x). 6
lim 1,(p})=sup HE-)‘ n =P 1(0) ®)
Let us first assume that C < + o0,
Property 1.
lim t(x)=C.
X
We have forn > M
* M X" @ xn
[t(x)-C]se~*C+e = Y, -n-!IC,.—CI+ > -E|cn—cy.
nwl nmMa4+l
)]

Pick ¢ > 0 and fix M such that |C, — C| < eforn > M. Then if
B, is an upper bound on the sequence (C,)y21, (7) yields

M n
|t(x)-Clse~*C+2B.e~* 3 %+e

nml

and the right-hand side of this last equation goes to zero as x goes
to infinity,

Property 2: For all € > 0, there exists A > 0 such that for all
np > A, |t(p) ~ C| < e. We have

lt(p)-Cls Y

(j) p(1=-p)yI|C~Cl+(1-p)'C.
J=1

Choosing M as*for Property 1 we get

ln(p)~Cl =28 3 (j) pll=p)i+e.

j=0

Let us denote by R, the random variable corresponding to the
number of retransmissions in a slot given that the backlog is equal

to n. We have
M
2 (j)piu-p)"-epmnsmg Ufff—p >’-2’]

j=0
for np > 2M. Then from the Chebyshev inequality

4

— 8
P{R,sM]s e ®
and Property 2 follows.

Property 3: t,(x/n) converges uniformly tc t(¥) on any
compact {0, A].

B s
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Fix ¢ > 0 and choose M such that £72, ., A/C;/j! < e. Then for
n>M+ land x € [0, A]

t <E) ~t(x)

Since liMpme (n = 1) *=> (n = j + 1)/nf = 1forl <j= M,
it is enough to show that (1 — x/n)"~/ converges uniformly to e~*
forl = j =< M. We have

e-X

M
. C
SEAJﬁ'i

j=l

_a@@=1) - (n—j+1) <I_£>n-—1
n

Y; + 2e.

x \n-J
(1—;) —e"*se~*[e¥/n~|]seAMin—|, )

On the other hand, for n > A,

<[ _£>n_]_e—xa (1 _f)n_e-x?_e-x[e/i +nlog(1=-A/n) . 1]
n n

=ed (l—ﬁ\n-—l
ny

and uniform convergence follows from (9) and (10).
Property 4: t,(x/n) converges uniformly to #(x) for x = 0.
Fix ¢ > C. From Properties i and 2 we can fix A such that:
)forall np > A, |t(p) - C| < ¢,
i) forallx > A4, |[t(x) ~ C| < e.
Then we distinguish two cases. If x € [0, A), then from
Property 3 there exists NV such that for all n = N, |t,(x/n) ~
t(x)} < e. If on the other hand x & (A, + ), we have

Y X
()l (2)-o

from i) and ii).

Thus, we have shown that when C is finite, ¢,(x/n) converges
uniformly to ¢(x) for x = 0. It follows that limy..co SUPxz0 £a{X/ 1)
= SUpyzo {(X) and so (6) is proved.

Finally, we show that (6) hoids when C = + oo, Choose &

arbitrarily large and M such that C, > A for n > M. Then for n
>M

x\_ “ n\fx\ X\ )
(D)o 3 () (2) esa-rinemn

From (8) P[R, = M) is arbitrarily small for nx/n = x large
enough. Therefore, sup o £5(X/n) = + o0 and lim,.., ,(p¥) =
+ oo, Since it is clear that if C = + o, then sup,z¢ £(X) = + o,
(6) holds.

From the equality lim,~ d,( p*) = N — sup,xq #(x) and Pakes
Lemma in [21], it follows that if l"xm,,..a, C, = + o, then lim,—
d,(p¥)= ~ 0, and the system is always stable, whereas if limy-.»
C, < +00, then (X,),20 is ergodic for A < . = supyxo £(X).
Also, it is shown in the Appendix that Kaplan’s condition holds
for this system when the sequence (C,),», is bounded, thus from
Kaplan’s result [13], the backlog Markov chain is nonergodic
when A > 7,. 0

It is intuitively obvious that no decentralized control algorithm
of the form (1) can have a maximum stable throughput larger than
1. The theorem below gives a rigorous proof of this fact and also
shows that this throughput can be achieved with a control which is
much simpler than p.

Theorem 2: The best throughput achievable by a decentralized
control algorithm (1) is 5. = SUpyzoe™* 27, X"/n! Cp. lf e > C
= lim,~, C,, then there exists a constant 4 > 0 such that the
control p, = A/ X, for X, > A yields the optimal throughput 7..

(10)

=

+|tx)-Cls2e (1)
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Proof of Theorem 2: To prove the first part of the theorem
we use a result of [27] which is a generalization of Kaplan’s
Theorem. If p, = F(S;) and S, = G(S;, Z;), consider the
Markov chain (X;, S,) and the Lyapunov function V(n, s) = n.
Assume that A > .. Then

E[V(Xts1, Su-l)“V(Xn S| Xi=n, §;=5]
=>\-§"; < ;’) F(s)i(1=F(sN™IG;
i=l

2d, (P2t (12)

for all n large enough and all 5. Therefore, the drift of Vs strictly
positive outside a finite subset of the state space. Since it is shown
in the Appendix that the generalized Kaplan’s condition is
verified, it is enough to conclude that (X;, S, is nonergodic.
Hence, 7. is indeed the best throughput achievable by any
decentralized control algorithm of the form (1).

To prove the second part of the theorem, we need the following
property.

(I)Jroperty S:Ifforall x = 0, t(x) < supezo £(x), then supe=o
Hx) = C.

Ifsupeao t(x) = + oo, itiseasily seenthat C = + o0, If supezg
1(x) < +oo, then C < +oo. Consider a sequence (x,)nz) of
nonnegative reals such that lim,—e 1(X,) = sSUpezo0 £(X). If (Xp)n21
was bounded above by K < + oo, we would have foralln = 1,
t(xs) S Supyeo.x ¢(x), and in the limit sup,zo £(X) = sup.ejo.y
t(x). Then there would exist xo € [0, K] such that £(xy) = sup,zq
t(x), which is a contradiction, Therefore, (x,),z1 is unbounded,
and one can build a subsequence (Xax)x=1 such that limg—c Xn, =
+ oo, We still have, of course, limge #(Xy) = SUPrzo /(x), but
on the other hand, we have limg—q #(x,,) = limy-e #(x). From
Property 1 in the proof of Theorem 1, lime.. t(x) = C and
Property 5 follows.

Thus, if n. > C, then ¢(x) achieves its supremum at some finte
positive real A. Let us consider the control p, = A/ X, for X, =
A. (Note that the value of the retransmission probability is left
unspecified for X, < A because it does not affect the throughput.)
Then from (4) d, = A - t,(A/n), and from Property 3 in the
proof of Theorem 1 lim,.., d, = N = t(A). Then it follows from
[21] that (X)),>¢ is ergodic if A < t(A) and from [13] and the
Appendix that (X))o is nonergodic if A > {(4). Thus, the
maximum stable throughput of the system is 1(4) = sup,= t(é)
= e

Note that the closed-loop throughput obtained in Theorems 1
and 2 can be interpreted as 1, = SUpy- pyx>0 E[Cw], that is as the
supremum over x of the expected value of Cy if N is a Poisson
distributed random variable with mean x. Note that if we were to
follow the popular approximation {1}, [2], [10], [16], [18], [24],
{26] that assumes that the number of transmissions in each slot, NV,
is Poisson distributed, and if we could choose any positive number
as the mean of N by regulating the retransmission probability, the
throughput would be equal to the average number of successes per
slot, E[Cy}, maximized over the mean of N. As in the usual
collision channel, a wrong analysis leads to a correct conclusion.
Several examples are gathered in Table I (see [8] for details).

Probably the most important conclusion of this section is that in
general it is not necessary to compute the exact value of p¥ which
would require a large amount of on-line computations. and
seriously hinder any application of Theorem 1 to the case where
the backlog is unknown. Two cases may occur. If £(x) does not
attain its supremum, from Property 5 in the proof of Theorem 2,
we have . = no = C (e.g., this happens in the model developed
in’[6] for mobile users with pairwise transmissions). In this case
no throughput improvement can be achieved by varying the
retransmission probability, and therefore it is enough to restrict
attention to the open-loop strategy studied in [8]. On the other
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TABLE!
OPEN-LOOP AND CLOSED-LOOP THROUGHPUTS FOR SEVERAL
MULTIPACKET CHANNELS
-4 Q A°
e fmelmoo | MTRe X G
al
:zﬁ:::::i;mnd 1 n=l 0 et
0 a>l
qltequency
frequency Ll 0 q et
Moppiog {8} n(1 q )
mobile users
with pairwise t 1 1
tesnymusmon {8}
capture
< omer & =1 L g ey exp-Fe
“z:{;; enains 4 :>l 7 ﬁ’+(l ﬂ’)“p( ﬂ’-—l)
f'uf::g disciman | 1 n el 0 max {(AQ=1) ¢=A + ¢=4Q)
uon {3 (1-Q)* n>1 A>e

hand, if there exists 4, 0 < A < + o, such that t(4) = sup,zg
1(x), then we have shown in the proof of Theorem 2 that the
control p, = A/X, for X, = A yields a maximum stable
throughput 1(4) = 5., meaning that the system is optimal. Hence,
only 4 has to be computed, and this can be done before starting
the operation of the system.

Although in most practical applications (C,), = 1 does have a
limit, it is worth noticing that Theorem 1 can be generalized to the
case where C does not exist. It can be shown [9) that if the drift is
minimized at zach step, then the system is stable for A < supy.o
1(x) and unstable for A > sup,»o £(x) + limy~o sup C; — limy-c
inf Cy. As in the open-loop system when (C,),» does not have a
limit, nothing more can be said about the throughput without
further information on the sequence (Cp)pzi. But the main
drawback in such a case is that there may not exist any control p,
=A/X, that yields the optimal throughput.

The access rule for new packets that we have been considering
so far is usually referred to as delayed first transmussion (DFT).
With this access rule, newly arrived packets are treated exactly n
the same way as backlogged packets. Let us now examine what
happens when on the contrary an immediate first transmission
(IFT) rule is used, that is when new packets are transmitted with
probability one in the slot immediately following their arrival, It
has been proved in [8] that the open-loop throughput s the same
for both first transmission rules. The closed-loop throughput on
the other hand depends on the access rule. For instance, it is well
known [4] that for the usual collision channel in the IFT case, the
optimal retransmission probability is p* = Ny — A/t =)y,
yielding an optimal throughput Ae*/*e~!, in contrast to the
throughput 5. = e~! for the DFT case. In the multipacket channel
with the IFT rule, the optimal throughput depends not only on the
mean but on the whole distribution of new packet arrivals.
Interestingly enough, it can be proved that both throughputs
coincide when the new packet arrivals are Poisson distributed.
Still with the same method as in the proof of Theorem 1, it can be
easily shown that there exists a retransmission probability that
minimizes the drift d, at state 7. With such a retransmission
probability, the system with IFT rule is stable for A < supszo
T(x) and unstable for A > sup,»o T(x), with T(x) = e~* 2>
x*/nt £, N\,Cr.j, Where we have defined C, = 0 for notational
conveniénce. It can also be proved that a control of the form p, =
A/X, yields a maximum stable throughput 7(4). Since sup,»o
T(x) depends on the whole new packet arrival distributio'.
(\y)nz0, this result is not as conclusive as in the DFT case. This is
because the stability region N < sup,.o T'(x) is actually given in
the form of an implicit equation in A, which cannot be solved in
general without further specifications on the distribution (\,),o.
For instance, this stability region could be empty. Consider, for
example, the usual collision channel with possibly some added
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noise0 < C, s land C, = Oforn = 2. Then T(x) = C, e~*(\
+ Aox) and T (x) = Ce~*(Ng — N} = Aox). Therefore, for any
distribution such that Ay < \,, T'(x) is maximum at 7(0) + C/\,,
and the stability region is empty since C)\; < A, < \. Nofe that
in this sense, the immediate first transmission does not perform as
well as the delayed first transmission with which the system can
always be stabilized.

If there are solutions to A < supeno 7(x), then the bost
throughput achievable by the class of algorithms in (1) is v, = sup
{\:N < sup,»o 7(x)}. This is what happens, for instance, when
the new packet arrivals are Poisson distributed.

Theorem 3: If the new packet arrivals are Poisson distributed,
the best throughput achievable with an IFT rule is the same as in
the DFT case, ». = supyao #(%).

Proof of Theorem 3: If limyao C, = + o0, theny, = v, =
+ 0. Assume now that C < + o0, We get

X

Te=een XS S e,

Am0 " k=0 k!

(-] Cn
=e~Wrd 3 2 (e M) (13)
nwi
Thus, in this case, T(x) depends only on A, and to clanfy the

proof below, we denote it by T3, (x)

Mx)=t{(x+N). (14)

Assume that #(x) does not achieve its supremum. Then from
Property 5 in the proof of Theorem 2, we have 5. = C = limye
t(x) It follows from (14) that for any A\ > 0, limy=,, T(x) = C.
Therefore, for all A > 0, sup,.¢ Ta(x) = C. Hence, forall A >
0, sup,ao 70(x) = sup,.o 1(x), and by definition of », we finally
get v, = sup, .o #(X). Note that 7, does not achieve its supremum,
in the sense that if there existed A € (0, ».) and x;, = 0 such that
ve = T\(x), we would have sup,.o 1(X) = t(A + x).

Assume now that ¢(x) does achieve its supremum. there exists
Xo = 0 such that sup,.q £(x) = #(xp). Then for all A n [0, xp].
T;}(xo = A) = SUpP,ap 1(X) = sup,»¢ 7x(x). Thus, forall X € [0,
Xo

sup Th(x)=sup t(x)=Th(xo—N). (15)
x=0 x20

We have for all x = 0 t(x) < x, therefore supe.q f(X) < Xo.
Together with (15), it follows that for all A\ € (0, supezo £(X)), A
< SUpPyxg Ta(x), and therefore v, = supyao £(X) = 3. Since from
(14) sup,z0 T(X) < Supyzo 2(X) = 1. forall A, we get v, < . and
finally v.=1,=supyao 2(x). Note that from (14), T, reaches its
supremum too, since for all A < y,, there exists x, = 0 such that
(%) = v

Note that we have also shown in this proof that T(x) reaches its
supremum iff #(x) does, which means that ». can be achieved with
a control of the form p, = A/X,, iff v, can.

I. OpTIMAL CONTROL FOR THE MULTIPACKET CHANNEL

It is assumed from now on that the users do not have access to
the value of the backlog, so the problem becomes one of control of
the Markov chain with partial state information provided by the
channel feedback. We build a backlog estimate S, with feedback
which is such that Z, = 0 if slot ¢ was empty, and Z, =0
otherwise. The results of the previous section strongly suggest
that we should use as a retransmission probabulity p, = A/S,,
where A is a point at which #(x) achieves its supremum (according
to Property 5, A is assumed to be finite). We show that the
resulting control algorithm achieves the optimal maximum stable
throughput .. This holds provided that the following assumption
on the reception matrix is verified.

T ———————
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C0: There exists § > 0 and B such that forall n = 1, 24_, e
Ex < B.

The purpose of condition CO is to bound the probability of
having large numbers of simultaneous successes. Unbounded
numbers of successes per slot are difficult to deal with because
they may result in very large instantaneous errors in the backlog
estimate. Note that condition CO is likely to hold in most
multipoint-to-point channels because of practical limitations on
the receiver capabilities, and that it is verified for all the examples
in Table L.

Theorem 4: Assume that there exists A € (0, + o) such that
t(A) = supeso ?(x), that the new packet arrivals (4,),=0 are
exponential type', and that condition CO holds. If ¢ < Oand 8 <
0 verify the following two conditions?:

Cl: B>\

CuB(l —eMN+n-AN+a =0
then the control algorithm (cf. the control laws proposed in [15],
(19], and [25])

A4
P:-S‘

Sier=max {d, S;+al(Z,=0)+BI1(Z,=0)}

has maximum stable throughput equal to 7,.

Proof of Theorem 4: The proof is based on the method
developed in [30]. The idea is to use the properties of the
homogeneous, two-dimensional vector Markov chain of the
backlog and its estimate M, = (X,, S;) to build a Lyapunov
function whose drift is negative in the first quadrant of the (n, s)
plane when A < .. It turns out that this fails to hold in two cones
of the state space, but it can be proved that the J-step drift of the
Lyapunov function is negative for some integer J, and that this is
enough to ensure that M, is geometrically ergodic. It follows from
Theorem 2 that M, is nonergodic if A > 7.. For substantial
portions of the proof, the reader is referred to [9] because ot space
limitations., _

Denote by X, = §, — X, the error in the backlog estimate. The
first part of the proof mainly consists of computing and
approximating the drifts of X and X, which are the basic building
blocks for the Lyapunov function.

Denote by ¢(n, s) = E[X;4, = X,|M; = (n, 5)] the backlog
drift at state (n, 5), and by d(n, 8) = E[X,| = Xi|M, = (n, 5)]
the drift of the backlog error. For technical reasons, what we most
often use in the proof are the truncated drifts, which correspond to
the value of the drifts restricted to those paths where the variation
in the backlog is bounded by some integer J, thatis c(n, s, J) =
El(X,y ~ XN(X,e) = Xi| S))M, = (n, )} and d(n, 5, ])
= E[(Xi1 = X)I(| X1 — Xi| sT)IM, = (n, 5)}. Clearly,
these truncated drifts will be good approximations of c(#, s) and
d(n, s), respectively, when J is large. It will turn out that the
drifts dcpend primarily on the ratio x = n/s for large values of n
or s Thus, it is convenient to define the following two regions in
the (n, s) plane:

Co, M)={(n, 5) : 120, 520, l+)\osg-sl+)\|}

Uu={(n,s): n=M or s=M)

where N and A, are such that —o < Ny € A\ = + o0, The aim
of the first part of the proof is to show Proposition 1 below which
summarizeg all the properties of the drifts that are needed for our
purposes (see Fig. 1).

! A, is exponential type if there exists & > 0 such that £[e*] is finite. For
instance, this is true if A, is Poisson distributed.

! Conditions C1 and C2 define haif a straight line in the plane, and therefore
an infinite number of possible estimatiun schemes, all of them yielding the
same throughput.
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Fig. 1. Drift properties (Proposition 1).

Proposition 1: There existy € (0, 1/5), 6 > 0, and an integer
Jo > O such that for all J = Jy:

i) forall (n, s) € C(=5v,5v) N Uy, c(n, s) = —=6and c(n,
SJ)= =6 +v(J);

i) for all (n, s) € C( -, —y) N Uy, d(n, s) < -6 and
din,s,J) s =6 + v(J);

iii) for all (n, s) € C(y, +) N Uy, d(n,s) = and d(n, s,
JY=6 - v(J)
where »(J) is a nonnegative function which goes to zero a J goes
to infinity.

The detailed proof of Proposition 1 can be found in [9]. After
computing the value of the drifts

c(0, s)=X (16a)

n A\ A\
(e v

d(0, s)y=max {A-s, ¢} -\

, c(n ,s)=>\—i
. jul

(17a)

d(n, s)=B=\+(max {4 -5, a}-F) (“é)n
+3

n\fAY\ AN\r-i
BOE () o

we work out upper and lower bounds by truncating the sums (16)
and (17) to a fixed number of terms, and then we approximate
those bounds as a function of the sole variable n/s. The main idea
is that the dynamic behavior of the Markov vector M, = (X,, S;)
depends essentially on the ratio X,/S,. For instance, if x is nearly
equal to 1, the backlog estimate is close to its ideal value, and we
should have c(n, 5) < 0 since the backlog drift is negative in the
perfect state information case. Also, a well-behaved estimate
should be such that if x < 1, then the error s — n is positive, and
therefore should have a negative drift d(n, s) < 0 (see [15]). In
the same way, we expect to have d(n, s) > 0 for x > 1.
Let us define the following Lyapunov function:

143y -3y
3y (n-s), 3y (s n)}

V(n, s)=max {n,

where the constants have been. chosen so that ¥ is continuous.
V(n, s) is equal to the first, second, and third term inside the
bracket when (n, 5) is in C (- 37, 3v), C(3y, + ), and C(~ o,
- 3y), respectively. Notice that ¥ is defined so as to take the best
advantage of the drift properties listed in Proposition 1. For

™
!
!




Aromgrurian

1158

instance, when ¥(n, s) is equal to , then the Markov chain M,
belongs to C (— 3y, 3y) which is included in C (- 5y, 5v) where
the backlog drift is negative provided that either n or s is
sufficiently large. Similar comments can be made about the other
two regions. Unfortunately, this does not enable us to conclude
that the drift of the Lyapunov function is negative in Uy because
M,,, may well be in a different region than M,. However, this
change of region becomes unlikely if we exclude a small zone
around the lines x = 1 + 3y where V changes definition and
indeed the second part of this proof consists of showing that the
Lyapunov function has a negative drift in the remainder of the
state space.

Proposition 2: There exist My = 0 and 8 > 0 such that for all
N = M,and forall (n, s) € Uy N [C(~®, —4y) U C(-2y,
27) U C(dy, =)},

EV(M1) = V(M) M= (n, )] < ~b.

Proof of Proposition 2: We consider separately likely and
unlikely events

E[V(M;11) - V(M) M= (n, 5)]
=E(V(M,1) = VIMDI(|A - 2] ST)| Me=(n, 5))
+E[(V(Myh) - VIMDNI (A= Z]> DM = (0, $)). - (18)

We start by showing that the first term, which corresponds to
likely events, is negative when J is large by using the properties of
the truncated drifts from Proposition 1 and a simple geometric
result. The lemma below, whose proof is in [9], gives 2 measure
of how much a cone C (Mo, A1) expands if each of its points is
allowed to move of some distance that cannot exceed B in absolute
value along each axis.

Lemma: Considery > 0, B> 0,andy — 1 < . < Ay <
+ co; and assume that {n — n’| < B, |s — s’| < B,and Q = B/
v + INDO + 2 +_v). Then:

1) (n,5) € C(Ny, ) N Uy

= (n',5") € C(Ag—7, ®) N Ug-p
2) (n,8) € C(~=, \) N Uy

= (n',5') € C(—o, \i+7) N Ug.p
3) (n,5) € C(hy M) N Up

= (n',5') € C(N~v M+7v) N Ug-p.

Set B(J) = max {J, la| + B}, and define Q(J) to be any real
such that Q(J) = max {B(J) + M, BUJ )y (1 + 4y) 2 +
3y)}. Wehave |S,,i - S| < [o] + 8 = B(J), and if |4, — 5|

< J, then | X,.; — X,] = J < B(J). From the lemma, Q(J) is
such that
M, € C(~2v, 2y) N Ugyy = My € C(=37,37) N Uy

(19)
(20
M, € C(—,-47) N Ugyy = My, € C(-, =37) N Uy

M, € C(dy, @) N Uy = M4y € C(3y, @) N Uy

@n

where M has been defined n Proposition 1. Assume, for mstance
that M, belongs to C(—2y, 2y) N Ugy. From (19), M. €
C(-3y, 37) N Uy N C(~57, 5v) N Uy Hence, if J = Jy, we
can apply Proposition | i):

E{(V (M) = VIMNI({A~Z | s)HIM=(n, 5)]

=c(n, s, Jys-6+v(J).
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If M, belongs to the other two regions, C(4y, ®) N Uy, or
C(-o, =4y) N Uyy; a similar argument holds, using
Proposition 1 iif) and ii), respectively, along with (20) and (21). It
follows that for all J = Jp and for all (n, 5) € Upyy N [C(—,
=4y) U C(-27,2y) U C(dy, )]

E[(V(M)) = VIMNI(A - Z|sDIMi=(n, D= =d+ )
2

with 6, = min {1, 1 -3y/3y} and »,(J) = v(J) 1 +3v/ 2.
To deil with the second term on the right-hand side of (18), we
consider the further decomposition

E[(Y(M1)= V(MNI( A= 2] > D) M= (n, 5)]
=E[((V (M) = V(MDD I(A> 2+ D) M= (0, 5)]
+E[(V(Mie) = VIMD (2> A+ D) M= (1, 5)]. - (23)

Let us denote by 7\(n, s, J ) and T(n, s, J ) the two terms on the
right-hand side of (23). The first term T\(n, s, J ) corresponds to
a case where the variation in the backlog is bounded below, and
can be shown to vanish as J increases by using the sole fact that
the mean arrival rate X is finite. Consider now T(n, s, J ). If M,
= (n, s) belongs to a region such that x = n/s > X, then x, can
be chosen large enough so that if M, ., belongs to C(~ o0, —3v),
then the error in the backlog estimate which results from the large
number of successes just compensates the imtial error 1 — 5 > 0.
On the other hand, when M, belongs to any region such that x 1s
bounded above, then E[ZJ(Z, > J)|M, = (n, s)] goes io zero
uniformly in (1, s) and T5(n, s, J ) can be dealt with by using the
following rather crude bound for the variation of V:

| V(M) - V(M) smax |1, 22, 1237
3y 3y

C(a]+B+ A~ SRU+]4,~Z) (24)
where R is some positive constant. It is shown in [9] that
EU(V(Mi) = VIM) (A= 2> DIM=(n, 5)]

s (J)+es(n, 5) (25)

where limj.o, #2(J) = 0, and ¢,(n, s) is a nonnegative function

that depends on J, and goes to zero as either 21 or s goes to infinity. - v

By using (22), (25), and the decomposition (18), we get the
desired result that the drift of V' is negative in this part of the state
space: fix an integer J,,, such that J,, = J, and that for all J =
Joms 1) + 12(J) = 6,/3. Then from (22) and (25), we have
forall (n, s) € Ugypm N [C(=, —4y) U C(-27, 2y) U
Cdy, o),

E(V (M) = VM) M= (3, 9IS =3 b1t g0 19)

Then we can choose an M, > Q(Jn.) which is large enough so
that ¢, . (n, ) < 8,/3 for all (n, 5) in Uy,. 0

This concludes the second part of the proof. Unfortunately, it is
not always true that the drift of V is negative outside a finite subset
of the state space. For instance, we have proved that in the case of
the usual collision channel with Poisson new packet arrivals, there
exist constants B,, > 0 and M,, such that for all (n, ) € Uy, for
which x = | £ 3y, and for all & and g verifying Cl and C2,
ElVM,.) = VIM)IM, = (n,s)] > B,,. However, discontinui-
ties around the lines x = 1 = 3+ cancel out when one waits long
enough, and in the last part of this proof we show that the J-step
drift of V, E[V(M,.,) — V(M)IM, = (n, 5)] is negative for
some integer J.

Proposition 3: There exist J; > 0, p > 0, and My > 0 such
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that for alf (n, 5) € Uy
EWV (M) = V(MY M=(n, s)I< —p.

Proof of Proposition: One of the main problems in dealing
with the J-step drift of V is to control the changes of tegions
between M, and M, ,,. To this end, we define the stopping time

>J’} .

Ifr;= J,thenforl < k < J, | Xoux — X)| = Pand |S,,x - S|
< J(la| + B). Thus, if we define B'(J) = max {J(la| + B8),
J*}, and Q’(J) to be any integer such that Q’(J) = B’(J) +
max {My, M} and Q’(J) = 2B'(J)/v(1 + 9/2v)(5y + 2),
ther}. still assuming that 7, = J, we get from the lemma for 0 < &
-5

s
2 (Arex— 2t+k)

T7=min {520,
k=0

MEC (—°°. —47—%) N Uory
\

= My, € C(-, —4y) N Uy, (26)

MEC <—27+%,2 -%) N Uy

= Mk € C(=27,27) N Uy, (27

= Mix € Cldy, ®) N Uy, (28)
M €EC (—47-—% , -27+%> 0 Ugrny
= Mux € C(=57, —7) N Uy (29)
M € C (27—% , 47+%> A Uiy
= Mk € C(y, 5v) N Uy, (30

In other words, we have partitioned the plane into two zones

ZN=C<—oo, -4«,-%) uc <-2—,+-;- , 27--‘21>

U c<47+%,oo>,
and

Zp=C (-47-%, —2~,+-'21> ucC <2 —% , 4~,+%> .

Then we have chosen @'(J ) such that if M, belongs to Z, which
is slightly smaller than the region in which the drift of the
Lyapunov function is negative, and if 7, = J, then the Markov
chain remains 1n the region 1n which Proposition 2 applies up to
time ¢ + J (see (26)-(28) and Fig. 2). Q’(J) is also such that if
M,isin Zpand if 7, = J, thenup to time ¢ + Jthe chain staysina
region such that two out of the three properties of Proposition |
hold at each step (see (29), (30), and Fig. 3).

We start by showing that the J-step drift of V is negative at (n,
$) when (n, 5) belongs 0 Zy. We decompose the J-step drift of
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Fig.2. IfM, € Zy 0\ Ugpyyand if 7, 2 J, then M, belongs to the region
where the drift of V is negative.

Fig. 3. IfM, € Zp N Upqyy andif 7, 2 J, then M,,, belongs to a region

where two properties of Proposition 1 hold.

as follows:

E[V(M,, )~ V(M)IM,=(n, 5)]

J=-1
=3 E[ETV(Miks1)= V(M )| Miak)
kw0

J=-1
Iz DIMi=0, 1+ D ELEIV (Miyke)
k=0

= V(Ml+k)|Ml+k]1(TJ<‘I)IMI=(n) ). (3

Denote by U,(J, n, ) and Us(J, n, s) the two sums on the right-
hand side of (31). If 7, = J, then (26)-(28) hold, and therefore we
can apply Proposition 2

Ui(J, n, $)s = J8aP[r,=J | M, =(n, $)]. (32)

Let us now show that 7, < J is indeed an unlikely event, the
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probability of which goes to zero as 1/J uniformly in (n, )
Plr,<JIM=(n, )]

sJ-EIP[

k=0

k
2 (Ars1=Zes0) >-’3|M:=("» 5)]

i=0

5121 P [i A,+,>J’]

k=0 10

J-1 k
+ P[E S>3 M =(n, s)] .
k=0 Lm0
From Markov's inequality we have
§ 2=
Plr;<J| M=, s > (k+ DA
k=0

1 J=1 k

+7§ kzo 120 E(ZiulM=(n, s)).
Denoting by B, an upper bound on the sequence £,(p¥), it follows
from Section II that E[Z,.(|M, = (n, 5)] = ELEIS|M1]IM,

= (n, 5)] = B,, so we get
1 B,
Pry<J|My=(n, s)]s-)%gi f-}z—s%- (33)
where B, is some positive constant. From (24), it is easy to check
that the drift of V'is bounded by some positive constant By, so that

U(J, n, 5)<JBy Plr,<J|M,=(n, 5)]. (34)
Considering (31), (32), (33), and (34), we get
EV(M45)= V(M) M=(n, $)) s = 5oJ + (By+8) B,.
Therefore, thare exist constants gy > 0 and J; > 0 suc, that for
all J = Jy and for all (n, 5) € Ugyy N 2,
E[V(Mi )= V(M) M= (a, s)}s - Ju. (3%

We now proceed to show that the J-step drift of the Lyapunov
function is negative in the remaining part of the state space Zp
consisting of the two cones around x = 1 * 3v. This is done in
two steps. We first show that the J-step drift of V restricted to
likely events {7, = J} goes to — o as J increases, and then we
prove that the J-step drift of ¥ restricted to unlikely events {r, <
J} is bounded above independent of J.

Assume, for instance, that (n,5) € C(y — v/2,4y + v/2) N
Ey (). The difficulty here is that ¥ can take two possible values,
and therefore Proposition I cannot be used directly. If 7, = J,
then from (30) M. € C(y, Sy) N Uy for0 < k < J, so that
V(M) = max {Xisk, (1 + 37)/3v(Xise = Siex)}. There-
fore,

EWV(My.)= VM) (1,2 )| M= (n, 5)]

143
=F [max {X,”, —;Yl (XH»J"'SH».I)}

A(rz)|M=(n, 8)]

1+ 35
-E [max {X,, —ﬂl (X,—-S,)}

- H(ry= )| M= (n, s)]

143y

sE [max {Xr+J-X¢'~3T(-/\7:+/+X¢)}

cl(rzD\M =@, S)]

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 34, NO. 11, NOVEMBER 1989

since max {a, b} ~ max {c, d} < max {a ~ ¢, b = d}. Then
using the fact that max {@, b} < max {0, a + f} + max {0, b +
S} = ffor f = 0, we get

E[(V(Myy))= VM) (ryz )| M= (n, 5)]

sE [mu {0, Xiey= X146, %}

* Iz )| M= (n, S)]

+E [max {0, 1%31 (~Xis s+ X+ ‘{}
v 2

s Ir2D)| M= (n, s)]

-E [6. ;1(7;21)|M,=(n, s)] (36)

where 6y =min {1, (1 ~3v)/3v} has been defined in (22). We
show that the first two terms on the right-hand side of (36) are
bounded. Since (33) limy.s ~ 8;J/2P(1; = J] = — oo, this will
be sufficient to prove that lim,..., E{(V(M,.;) — VM) (7; =
IIM, = (n,8)} = — . Define Wy = X,.p — X, + kv,/2and
Fi = F,,; where F, is the sigma-field generated by {A,, s < ¢ -
1; X;, s < t}, representing the history of the process (M,),»o up to
time ¢, To prove that the first term in (36) is bounded, we show
that there exists ¢ > 0 such that (Y}, Fy) is a supermartingale,
with Y, = e*¥kI(7, = k). We need .0 show that E[ Y, |F;] <
“r» which is equivalent to

E{e¥Xta ke 1 =Xt REVDID (12 k+ 1)| Fiy )
<edXeak=X+KIDED I (7,2 k)

sincel(myzk+ D=Knzi(T,zk+ ,and (1) = k) 1s
measurable with respect to F 4«

[(1,2k)E[e®Xt+k+ 1= Xtk * 8/ D F, <1 (7,2 k). (37)

Now if 7y = k, then from (30), M, ., € C(y, 57) N Uy Lemma
2.2 in [11] states that if X is a random variable such that | X} is
stochastically dominated by an exponential type random variable
Z, and if the expectation of X is strictly negative, E|X| < —¢,
then there exist two constants n > 0 and p < [ such that E[e”¥]
< p < 1. Hence, there exists ¢ > 0 such that

for all (n, 5) € C(~5%, 5v) O Uy,
E[e® X1+ 1= X1+ ¥D| M = (n, 5)) <]  (382)
forall {n,s) € C(~w, ~v) N Uy,
E[e8Xt41=-X+8/D| M, = (n, s)] <1 (38b)
for all (n, s) € C(y, ®) N Uy,
E[e¢(-z‘?1+1+X1+5/2)|M,=(n,s)]<l. (38¢c)

It follows from (37) and (38a) that (Y}, Fz) is a supermartingale.
Therefore,

ELY|Fol=EP¥i(rizDIF)<E[ Yol Fol=1.  (39)

Finaily, considering that max {0, x} = 1/¢ e%*, it follows from
(39) that the first term in (36) is bounded. Using (30) and (38¢), it
can be shown with the same method that the second term in (36) is
also bounded. Thus, threre exists a constant By independent of J
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such that
EV My 1= VMM (12 )| M= 0, )5 Br=3 biPlrsz ]

The case (1, 5) € C(-4y — v/2, =2y + 4/2) N Ug-yhcanbe
dealt with in a similar way, using (38a) and (38b). Therefore, we
have shown that there exist u; > 0 and J; > 0 such that for all J
= Jz and for all (n, S) € YQ'U) N Zp

EW(V (M )= VM (1,2 )| Mi=(n, $)] < = Jp2. (40)

It is shown in [9] that there exist a constant B > 0, a function
v3(J) with limy~, »(/), and a nonnegative function v,(M)
depending on J verifying limas—o ¥,(M) = 0, such that for all (n,
$5) € Uguysan N Zp,

E[(V(Myes)= V(M) (1,2 )| M= (n, )]

<B4+ (J)+ (M), (@41)

We are now ready to conclude the proof of Proposition 3. From
(40) and (41), we have for all (n, s) € Upuyss N Zp,
ElVM,)) - VMM, = (0, )] < B = Juy + n{J) +
vAM,). Fix an integer J; = max {Jj, J,} such that forall J = Jy,
B - J[Lz + UU;(J) < =-pa Then for all (n, S) € UQ-(J!).;.MI N
Zp, we have ETV(M,,p) = VIM)IM, = (n, 5)] < —py +
v;(My). On the other hand, we also have from (44), for all (#, 5)
€ Ugupesy N 2

E[ V(MHJ/)"' V(M) M= (n, $)1= —m Jj.

Now fix M, large enough so that v,(M;) = p,/2. Then define M,
= Q'(Jy) + M), and p = min {p,/2, Juu }. C{

We can now conclude that (M), is geometrically ergodic for
A < n. by invoking the following resulit.

Theorem (Hajek [11]): Let {W,} be a sequence of random
variables adapted to an increasing family of o-fields {F,}.
Suppose that W, is deterministic, that {W,, F,} is exponential
type, and that for some ¢ > 0 and @ > 0 we have E[(W,4) — W,
— €) I(W, > a) |F;] = 0 for all t = 0. Then for each value of
W, the stopping time 7 = min {¢f = 0; W, < a} is exponential

type.

Define W, = V(M) and @ = M;max {1,d + 39)/3v,(1 -
3y)/3y}. If V(M) > a, then M; € Uy,. From (24) and CO
(V(M,), F,) is exponential type since 4, is. From Proposition 3,
we can apply Hajck’s result to our system to conclude that 7 =
min {t = 0, V(M) < a} is exponential type for any initial
state. Since V(M,) = a implies that X; < g and S, < a/(1 -
3y), it follows that 7' = min {t = 0, Xu < a, and S,Jl = a/(l
— 37)} is also exponential type for any initial state, as well as r”
=min{f = 0, X, < a,and S, < a/(1 — 3y)}. Hrace, it follows
from [14] that (X], S;) is geometrically ergodic, concluding the
proof of Theorem 4, (]

IV. STABILITY PROOF VIA MIKHAILOV’S THEOREM

Mikhailov [19, Theorem 3] has recently found a powerful
sufficient condition to guarantee the stability of a Markov process
taking values on R* X R*. This result can be used to weaken the
sufficient conditions we imposed in Section III and obtain a much
more simple proof of stability. However, the form of stability
used by Mikhailov is weaker than the geometric ergodicity used in
Section 1.

Let M, be a discrete-time Markov process taking valuesin ¥ €
R, U(r) = {x € R™||x|| = r}, and 7,(S) = min {r = O:M, €
S|M, = x}, i.e., 7.(S) is the time it takes to reach the set S from
x. Then we say that the process M, is stable if there exist constants
¢y and ¢; such that E[r,(U(r))] < ¢, ||x]] + c; forall x € Y.
Using this definition of stability we show the following resuit
which is analogous to Theorem 4.
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Theorem 5: Suppose that:

i) the number of new packet arrivals per slot has finite second
moment E[A%] < + oo;

ii) there exists A € (0, + o) such that (4) = sup,sq t{x);

iif) CO”: there exists B < + oo such that for all n = 1,
22-" kzé,,k =< B.

Fix A < n.and & > Osuch that A < ¢(A£). Choose @ < 0 and
B8 > 0 such that

Cc1’: B(e“"-—l):t{é'ﬁl ett—q

A t(Ax) - xe-Ate=p A= HAL)
Cj: B>my(\)=_ sup ;

x>0,x#¢

xX—-Xxe “A(x=§)
Then the control algorithm

A
=g

t
S“.[:max {A, S‘+0t1(Z,=0)+61(Z¢=0)}

is stable.
Proof of Theorem 5: Let us state first Mikhailov's Theorem
(cf. [35] for an exposition of this result and its application in the
decentralized control of the conventional collision channel).
Theorem (Mikhailov [19]): Let M, = (X, S,) be a homogene-
ous Markov process on R* X Ry, with drifts

(c(n, 5), e(n, $))=E[M~Mi| M, =(n, 5)).

Suppose that:

i) there exists B < + oo such that for all (n, s) € R* X Ry,
E(|M, .y ~ M|*IM, = (n, 5)] < B;

ii) for all ¢ € (0, + ), the drifts (c(n, n/y¥), e(n, n/ V)
converge uniformly in ¥ as n goes to infinity to (c(¥), e(¥));

iii) the limit drifts (c(¥), e(y)) are differentiable on [0, + ),
with (e(0), e(0)) = limy—. (c(0, 5), €(0, 5));

iv) there exists ¢ > 0 such that if c(¥) = Yo e(¥o), then c(yo)
< =€

Then M, is stable.

Since bot'. .he new packet arrivals and the rows of the reception
matrix have finite variance, it is easy to check that condition 1) in
Mikhailov’s Theorem holds

ElliM; 4 "‘MIIPIM{= (n, 5]
=E[( X4 =X+ (Si1=S) M= (n, 5)).
Now EY(Si+1 — S)¥M, = (n, 5)] = o + B2, and from (2)
EU(Xou 1= X0 My= (0, NSE(AH + E(32M,= (1, 9)

From C0’ the variance of the number of successes is also bounded
E[Z|M,=(n, )]

Fe () (5) e

It follows directly from (16) and (17) that the limit drifts are
given by

c(¥)=A-t(AY)
e(¥)=B+(a=B)e=,
respectively, for ¢ € [0, + ). Uniform convergence to the limit

drifts follows immediately from the results given for the perfect
state information case (Property 4). Alzo it is clear the f(x) is
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differentiable (see (6), where 0 = C, =< n). Therefore, properties
i) and iii) in Mikhailov’s Theorem are satisfied.

In order to check property iv) note that if Y = £, then it
follows from C1 that

¢(Yo) = oe(¥o).

But, at that point, c(yy) < 0 because of the choice of £. There is
no other root of the equation c(¥) = ye(y), and, therefore,
property v) follows. To see this, note thiat because of C17, ¢(¥) =
ye(y) for ¥ # & is equivalent to

A-UAY) ag-p A=HAS)
g=—V

()

which is impossible € ¢ # £ because of C2’. a

It can be shown [9] that m,()) is finite for all nonnegative A and
£, and therefore the set of control laws defined by C1” and C2’ is
nonerapty. Actually, the set of control laws in Theorem 4 is a
subset of those in Theorem 5 because in Theorem 5 we can choose
& = 1, in which case C2 is equivalent to C1’ and Cl 'is more
restrictive than C2° because A = m(N) [9).

V. CONCLUSION

In this paper we have investigated the properties of decentral-
ized control algorithms for a random access channel with
multipacket reception capability. By using the working hypothesis
that the users are aware of the value of the backlog, we have
determined the best throughput achievable by any such protocol,
as well as a simple way to achieve it. The optimum throughput has
been shown to be given by the maximum average number of
successes per slot when the number of transmissions, per slot is
Poisson distributed. In the imperfect state information case, we
have shown that the same throughput achieved in the perfect state
information case can be achieved by using in lieu of the true
backlog, an estimate of the backlog computed at each station using
binary feedback, and we have used this estimate to derive a
contro] scheme which is optimal in the sense that it achieves the
optimal throughput determined earlier. This is true provided the
reception matrix verifies condition CO, which puts some restric-
tions on the number of successes per slot. By using Mikhailov’s
result, CO can be replaced by the weaker condition C0’. In this
case however, geometric ergodicity was not ensired. Note that
the feedback empty/nonempty used in Sections III and IV may be
less than the available feedback in many practical situations, but
no further information is needed: a ternary feedback would not
shorten the proof or achieve better throughput.

Finally, let us mention that one can easily modify the proof of
Theorem 4 to show that a similar result nolds with the IFT access
rule. More precisely, under a hypothesis paralleling those of
Theorem 4, one can build a control scheme hased on a binary
feedback empty/nonempty such that the Marko * vector (X, S;) is
geometrically ergedic for A < supe»q 7(x). Using Theorem 3, it
can be seen that the maximum stable throughput is ‘he same for
both access rules when the new packet arrivals a.c < uisson
distributed.

APPENDIX
KapLaN's CONDITION

Consider 2 Markov chain with denumerable state-space D, and
one-step transition probability matrix (Py)wpep Let V(x) by a
Lyapunov function on D. Then the generalized Kaplan's condition
holds if there exists a positive constant B such that for all z € [0,
{andallx € D

VW3 Py zVz ~B(1-7).
YED
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1) One-Dimensional Kaplan's Condition: Consider the
model of Section I with a control scheme p, = F(X,), and the
Lyapunov function ¥(x) = x. To check Kaplan’s condition, it is
enough from [27) to show that the downward part of the drift
-D(i) = 4, kP;; is bounded below. Fori = land | < k
< | we have

i-k i .
Pux=3 M 3 < j‘> F)I(1=F() ey g in-
n=0 Jwk+n

After a change of variable, it follows that

i . =1 J
D)=}, <J'> FOIU=F@ON TN\ Y (k-megu.
Jjmt L) kwn+l

(A-D)

If (Cy)n21 is bounded, then Kaplan's condition holds independent
of the retransmission policy. Denoting by B, an upper bound for
(Cn)nzh (A‘l) becomes

i . J=1
-D()z-Y ( J’) FY(1=F@) S MG

Jml nmQ

i .
z-3 (,’) F@Y(-FU)ICz B, (A)
J=1

2) Two-Dimensional Kaplan’s Condition: Consider now the
multipacket channel with a general control algorithm (1). Then
(X:, S)) is the Markov chain of interest, and the relevant Lyapunov
function is V(n, s) = n. We prove again that Kaplan’s condition
holds provided that (Cy)s», is bounded. From [27], it is enough
also in this case to show that the downward part T(x) of the
generalized drift is bounded below, with T(x) = Z,/v,< Py
(V(y) = V(x). Given a state x = (i, 5), we have

i
TW==3 13 P[Xesr=i=r, Sy =k| Xo=i, S,=s]
rul k

i
== 3 rP[Xp1=i-r|x,=i, $,=5]

rml
which is, in the same way as before

f=2  i=r i

TX)==-3r3 M 3

r=l n=0 Jmrn

<.;> (FS) (A =F(s)'erun

! /i J-1 J
==X () FOIU-F T M B (r=e

Jwi nal ren+l

this expression is similar to (A-1), and the end of the proof 1s the
same as in (A-2).
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Single-User Detectors for Multiuser Channels

H. VINCENT POOR, reLLow, IEEE, AND SERGIO VERDU, MeMBER, IEEE

Abstract—Optimum decentralized demodulation for asynchronous
Gaussian multiple-access channels is considered, It is assumed that the
receiver is the destination of the information transmitted by only one
active user, and single-user detectors that take into account the existence
of the other active users in the channel are obtained. This approrch Is in
contrast to both conventional demodulation, which is fully decentraiized
but neglects the presence of multiple-access interference, and globally
optimum demodulation, which requires centrslized sequence detection.
The problem considered is one of signal detection in additive colored non-
Gaussian noise, and attention is focused on one-shot structures where
detection of each symbol is based only on the received process during its
corresponding interval, Particular emphasis is placed on asymptotically
optimum detectors for each of the following situations: 1) weak
interferers, 2) CDMA signature waveforms with long spreading codes,
and 3) low background Gaussian noise levei.

I. INTRODUCTION

HE conventioral approach to the demodulation of

code-division multiplexed multiuser digital com-
munications is to demodulate each user as if it were the only
user in the channel. The multiple-access capability of such
systems is thus achieved by using complex signal constella-
tions that exhibit favorable cross-correlation properties. (See,
for example, [1] for a description o{ conventional multiple-
access demodulation techniques.) However, recent work by
Verdu [2] has shown that substantial performance gains can be
achieved in coherent multiuser systems by using a receiver that
takes advantage of the structure of the multiple-access interfer-
ence. For examp'e, this approach can be used to alleviate such
limitations as the near/far problem in the direct-sequence
spread-spectrum multiple-access (DS/SSMA) format. The
performance gains realized by the receiver proposed in [2] are
achieved by the use of simultaneous sequence detection of all
users in the channel, a task that requires a centralized
impiementation and a high degree of software complexity (for
example, the decision algorithm required is a dynamic
program (DP) whose complexity is O(2X) where X is the
number of users in the channel). Since the implementation
costs of such fully centralized detection algorithms may be
unacceptably high for many applications, and since network
security restrictions may not permit the distribution of all
user’s signaling waveforms to all demodulating termunals, 1t 1s
of interest to consider demodulators that lie between these two
philosophies of conventional demodulation, in which other
users’ signaling waveforms to all demodulating termunals, it 1s
optimum demodulation, in which all users in the channel are
tracked and demodulated simultaneously. The p. formance
results obtained in [2]-[4] indicate that an attractive compro-
mise in practice is to use optimum multiuser demodulators for
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only a subset of the active users and simply neglect the
presence of all other users. In order to take advantage of the
superior performance achievable by multiuser detectors, the
subset of active users to be taken into acccunt at the receiver
should contain all the users whose power is sufficient
regardless of whether their messages are destined to that
particular location.

In this pape: we consider the case of full decentralization
where the receiv r is constrained to track and lock to the signal
of only one user, but unlike the conventional single-user
detector, is optimized to take into account the structure of
multiple-access interference in making decisions. We consider
several design approaches that can be used to optimize these
structures depending on the amount of information that one .s
able to assume to be known about the signature waveforms
assigned to the interfering users.

This paper is organized as follows. In Section II, we wiil
first discuss the general structure of optimum decentralized
demodulators that simultaneously track and demodulate a
group of D users from a total population of X users sharing a
common communications channel where D =< K. We then
consider the structure of optimumn single-user detectors (D =
1), and particularize to the case K = 2 to illustrate this
structure. The results of Section II are for general antipodal
signaling formats In Section III, we turn to the development
of specific results for single-user demodulation of DS/SSMA
transmissicns. In this modulation technique, which among
coherent signaling formats is of particular practical interest,
each signature waveform consists of a sequence of chip
waveforms whose polarities are determined by a binary word
assigned to each user. The specific structure of the direct-
sequence format allows for the development of useful approxi-
mations to optimum single-user detection which are asymptoti-
cally exact as either the length of the spreading codes or the
signal-to-background-noise ratio (SBNR) increases w:thout
bound. We also show that (with K = 2) even in the absence
of any prior knowledge about either the spreading codes or the
timing of the multiuser interference, the optimum single-user
detector is not multiple-access noise-limited as the back-
ground thermal noise level vanishes. This is 1n contrast to the
conventional detector, which can incur an irreducible error
probability even in the absence of background noise. All of
these results for DS/SSMA require only that the chip
waveform (which is usually common to all users in a given
network) be known. Thus, these techniques can be applied n
secure networks where the distribution of one user’s spreading
code to other users is not desirable.

In Section 1V, we return to general coherent signaling
formats t¢ consider the problem of optimum single-user
detection in the presence of weak unlocked interfering users.
We model this problem by assuming that the multiple-access
interference is multiplied by a small amplitude factor ¢. We
then derive an expression for the likelihood ratio statistic for
optimum symbol decisions on the locked user that 1s of the
form of the conventional correlation statistic, modified by an
¢? term involving signal cross-correlation functions, and then
having higher order terms of order e*. The resulting locally
optimum detector correlates the observation with a replica of
the waveform of the user of interest, suitably smoothed to take
into account the presence of multiple-access interfersnce.
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1. OPTIMUM DECENTRALIZED DETECTION FOR MULTIUSER
CHANNELS

Throughout this paper, we consider a received signal model
of the form

re=5,(b)+n,, 2.1

where {n; — o < t < o} represents white Gaussian noise
with spectral height V"2, and where the received signal S,;(b)
1s the superposition of transmissions received from K separate
asynchronous users, i.e.,

-~ ®

K M
S()=3 3 blDsi(t-iT—1)

ko] 1= =M

2.2)

LR

where T 1s the symbol mterval, bi(i) is the ith symbol of the
kth user, 74 1s the relauve delay (modulo 7') with which the
kth user’s transmussion 1s received, and si(f) 1s the signature
waveform assignred to the kth user. (It is assumed that si(f) is
zero for + & [0, T).) Note that 2M + 1) is the number of
symbols per user in the given transmission, and b denotes the
K x (2M + 1) matrix whose (k, i) entry is bx(/).

Suppose that we wish to demodulate some group of D users
from the total population of K users where D < K. For
simplicity of notation, we assume that these D users of interest
are labeled 1-D. Thus, we know sy, ***,spand 7, ***, Tp,
and the maximum likelihood demodulator chooses a symbol
matrix bp = {bi(i); k = 1, -+, D} _, to maximize the
log-likelihood function

2 (o L (o
% I nswo i I tseeoon: ar

2 (o
+log E {exp [ﬁ [" tre-s200n54 at
0"~

b 1 se
F —— MA2
§ NOL [SM4] dr]} @.3)
where
D M
SP(bp)=S 3 blDslt-iT-7), -w<i<e
km) km=M
2.4)
g $H4 = S,(b) - SP(bp) 2.5)

and where the expectation 1s over the ensemble of all unknown
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maximization of (2.3) with a dynamic programming algorithm
yielding a TCB of O(]4])%. (See [2], {3] for details of this
analysis.)

Unfortunately, for D < K, the decomposition of (2.3)
necessary for a dynamic programming solution is not possible
because of the coupling among symbols in the expectation
terrn. This means that maximum likelihood-sequence deteccdion
1s not generally computationally feasible (1its TCB is exponen-
tial 1n the number of symbols per user) 1f all users’ signaling
waveforms are not known and locked. Thus, in considering
decentralized demodulators in multiuser channels, we will
restrict our attention to algorithms which demodulate only a
single symbol at a time, i.e., we consider one-shot detectors.
We also will restrict attention to the binary signaling case, in
which b,(i) € {—1, + 1} for all i, k. Extensions to general
alphabets are, in most cases, straightforward.

In the sequel, we will consider the case of full decentraliza-
tion, i.e., single-user detection, which 2an be modeled by the
binary hypothesis-testing problem

Ho: ry=5(1) +S¥4 +n,, 0st=<T

0<t=T (2.6)

where {n; —o < t < oo} is the white Gaussian noise and
where

Hy: r==5/(t)+S¥4 +n,,

K
SHA= N [bls(t—1+ T)+ bEsc(t— 7)),
k=2

0=<t=T

@n

with b and 6% denoting the kth user’s bits in the intervals
[~T + 7,70) and [7¢, T + 74), respectively. We also assume
that the receiver is coherent with user 1 so that {s,(¢); t € (C,
T}} is a deterministic waveformn, and that each user’s
signaling waveform is of the form

Sk = Rwe) V2, (1) cos {(wct+0) (2.8)
where w. is known. We assume that (w.7/27x) is an integer
large enough so that integrals of 2w, compouents can be
neglected.

Optimum (maximum likelihood/minim: m error probability)
decisions for (2.6) are based on compari. 4 the likelihood ratio
to a threshold. With this in mind, we give the following result.

Proposition 2.1: Suppose that the phase vector of the
interfering users 8 = (6, * * -, 8g) is uniformly distributed on
{0, 2x)%~" and is independent of b, = (b%, bf), k =2, «--,

quantities 1 S¥4, including delays, symbols, and (possibly) K, 7 = (7, **-, 7¢)and (a:(1), t € [0, T}, k = 2, -+, K).
waveforms. If the dependence of || S*4}| on 8 can be neglected,! then the
Note that, even if we ignore the complexity of computing Jikelihcod ratio for (2.6) can be written in the following form-

T X k=1 !

% ot o E [H Lok, s 1)+ ¥ 3Dy, 76))V2) exp <" S, Tuylbe, by, 7, Tj)))_!

w . j=

exp [_Vl— So rp(a(t) dt] : ';2 =2 2.9)

0 E [H Io((p3(bys Tk = 1) +¥2(bx, ™)) exp <"' S Tiylbss by, 7 Tj)>]

k=2 jn2

the expectanion 1 (2.3), the time-complexity-per-demodu-
tated-bu (TCB) of brute-force maximization of the log-
tikelihood function is O(|A|2*+Y/DM|A|} where |A] is the
size of the symbol alphabet. Thus, umless somé simpler
algorithm can be found, simultaneous maximum likelihood
sequence detection of D users is out of the question from a
practical point of view. For the particular case of fully
centralized detection (K = D), it turns out that a much simpler
algorithm can indeed be found. In particular, for this case, the
expectation term 1n (2.3) disappears (stnce S¥4 = 0), and the
remaining terms can be decomposed in a way that allows

' ibﬁ"\’?\t;‘a!
¥
b

where the expectation is over the ensemble of bits, delays, and
possibly waveforms of the interfering users? and we use the
notation

by, 7o, €)= |

No 0 ak(b/[;’ bf) t'—Tk)

() —ew!a )] dt (2.10)

" For a waveform x = {x(£), 0 s 1 s T}, ||x}|* denotes |7 x*(r) dt
? I )15 the modified Bessel function of the first kind of order 0, i ¢ , Iy(x)
= 1/2x {3 exp {x cos 0) df.
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2 172
Yi(be, 7)) = ()

T
So ar(bE, bE, t=m)rg(t) dt (2.11)

2w wy) V2 ST

Tkilbes bjy 7, 7)) = No ) ax(bk, bR, t—7)

* (b, bR, t-1)) dt (2.12)

ry(8) =N2r, cos (wet +6,) (2.13)
re()=v2r, sin (w.t +6;) (2.14)
(b, ¢, N)=bar(A+ T) +car(N). (2.15)

Proof: The likelihood ratio for (2.6) is equal to the ratio
of expected values of conditionally Gaussian @ priori densities
where the cxpected value is taken with respect to all random
quantities in S*4; this is given straightforwardly by

1
exp [—7\’— ||r—s,||2]
0

1
exp [—-7\,—0 |r+s "2]
E ’{exp [—-—I-‘HS'"A |P+-2~(r—s,, SM")]}
. No No

E {onp [ - 151 2trss 50 ]

where, for functions x and y on [0, T, the notation {x, y)
denotes {§ x(¢)y(t) dt. The first ratio in the above expression
is readily shown to be equal to exp [(4(w)"2/Np)T {T
ry(Nay(t) dr). Now, neglecting the dependence of {|S**{| on
0, we have for every b and

1 X €1
ﬁo "SM""Z= [E <%’£+ EI‘kj(bk, b/, Tk TJ))]' 2.17)

k=2 0 a2

LR=

(2.16)
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R 2 ], 10200

* cos? (O)¢I+0|))(¥[f(b£‘, bl}:’ t—1¢)
* Cos (Ok—wc;-k—-(?,)—(rq(t)—ew}’za, )
* sin et +6)))oy(bE, bR, t—74))

* sin (0 — w1~ 0y)) dt

K
=3, pulbis 7k, €) cos (B —were—01)
k=2

= u(be, 7i) sin (Bx = weTi~0y) (2.19)

where the last equality follows by neglecting the integrals of
the 2w, terms. Equation (2.18) is immediate from (2.19) and
the result follows. 0

Note that the structure (2.9) consists of the single-user (K =
1) correlation statistic

172

) Srr ()a () dt
No [4 P :

used by conventional single-user receivers, modified by an
additive correction term which accounts for the other users in
the channel. Note that the received waveform enters this
correction term through the sliding correlation statistics of
(2.10) and (2.11).

The simplifying approximation in Proposition 2.1, which
states that the energy of the multiple-access interference
process is independent of the carrier phases, is certainly
accurate when w.T is sufficiently large and the normalized
{i.e, unit energy) cross correlations between the interfering
users are low. We assume throughout this section and the
following one that this independence is valid. If such an
approximation is not assumed, then it can be shown straight-
forwardly that the multiplicative correction term in the
likelihood ratio (2.16) is equal to

(2.20)

k-1

2x 2x X . .
E 50 s go exp E pk(bk, Tky 1) cos Otk—';[lk(bk, Tx) SN Qg — E ij [ofe ] (ak—a,«) dOQ v dOl[(

kw2

jm2

2r 2r X
E S e S exp | > kb, 7o» —1) cos o = Ylbr, 72) sin ax= > Ty cos (ee~ay) | do =+ + doy
[} Q

k=2

So, it remains to show that for all (g, by, 76, &k = 2, -+, K),
we have

(2r

dby -+ dby
Q2m)%-!

20

gh exp —2—(r—ex, SHA)
0 N ’

X
=TT % (0i(bx, 75, )+ V3(bi, TN, (2.18)

k=

To this end, we note that the following sequence of equalities
holds:

2
—{(r—es;, SMA
No(r s )

W2 K o1
=T 2 L cO-es @y ireato, o8, =m0

k=2

* €C0S (Wel~weTe+0;) dt

(2.21)

k=1

J=2

Several variants of the general structure of (2.9) are of
interest and will be considered here. One such variant is that in
which the modulation waveforms of the interfering users
{a,(t); 2 s k = K} are known, and the remaining unknown
quantities in {5;(t); 2 = k =< K} are all independent with the
data bits and delays uniformly distributed in their ranges. In
this case, the expectations in (2.9) reduce to

1
E{(')}=E4—7':)z',

bkt

. X(O'T‘K—l E{(~)lb” T} de oo dTK (2.22)

where b’ = (b, ***, by) and where the inner expectatior. is
over the amplitudes. Thus, the computation of this likelihood
ratio is of exponential complexity in K. Moreover, there will
be a further substantial computational burden in computing the
(K -~ l)-dimensional integral corresponding to averaging over
the relative delays r;, » -, 7«.
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Fig. 1. Optimum single-user detector (K = 2). Replicas of a(+, +, ~1)
and ay(+, —, — ) are generated by the blocks corresponding te the signal
of the second user.

Fig. 1 illustrates the particularization of the demodulator
derived in Proposition 2.1 to the two-user case. Note that the
quadrature component of the input is used and that convolu-
tions [required to generate (2.10) and (2.11)] and nonlinear
memoryless operations are also needed.

For K > 2, the delay integrals do not appear to be
obtainable in closed form. However, even if they could be, the
exponential (in K') complexity of £,, shows that optimum
one-shot single-user detection in a K-user channel is at least as
computationally burdensome as centralized simultaneous se-
quence detection of fully locked users. However, one-shct
single-user detection does not require tracking phases, delays,
and amplitudes of all users, and thus may be preferred if these
quantities are not stable for rclatively long periods of time.
Moreover, and perhaps more importantly, Proposition 2.1
also applies to situations in which the modulating waveforms
of the interferers {a,(¢); kK = 2, - -+, K} are not known. This
situation is the norm for the noncentral nodes in many practical
radio networks, and thus the centralized detection algorithm of
[2]} cannot be applied to such cases unless the receiver
estimates the unknown signal cross correlations. Furthermore,
as it is shown in Section III, an important reduction in the
complexity of computing (2.9) results from the modeling of
the modulation waveforms of the interfering users as being
signature sequences.

III. SINGLE-USER DETECTORS FOR DS/SSMA CHANNELS

In practice, one of the most important types of code-division
muitiple-access systems is direct-sequence spread spectrum
This corresponds to the particular case of the model (2 1),
(2.2), and (2.8), 1n which the &th user’s signature waveform is
of the form

N-1
a(t)= E cy(t—iTy), 0=t=T (3.1)

=0

where {cy} V5! is a signature sequence of binary (+ 1) digits,
the chip waveform v is nonzero only on {0, 7], and the chip
duration T, 1s given by T, = T/N. In many DS/SSMA
muitipoint-to-multtpoint channels, it is frequently reasonable
to assume that user | knows the chip waveforms of users
2-K, but not the specific signature sequences they employ.
Since these sequences are usually chosen to be pseudonoise
sequences, it 1s reasonable to model them (from the viewpoint
of user 1) as independent sequences of independent, equiprob-
able binary digits. In this section, we apply this model for the
interfering users-in the likelihood ratio formula of Proposition
2.1. As we will see below, this affords a much more
manageable form for the likelihood ratio in the limiting cases
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of practical interest, namely, when the number of chips is
large and when the white Gaussian noise level is low.

A. Optimum Single-User Detection for Long Spreading
Sequences

To study the large-N behavior of the likelihood ratio of
Proposition 1, we first define the following functions:

EOV={ pO-ewlta@Olye-Ndt (32)

$={ r@ve-n) d (3.3)

and

8N, 0)=§.(N\) cos 8~ (N) sin 6 (3.9

where the parameter e takes on the values 41 and — 1 and g,
is abbreviated as g. and g., respectively, in the remainder of
the section. Now fix 7 € (0, T) and suppose that n € {I,
++«, N}issuch that (n = 1)T. < 7 < nT,. Then define

dviz= bf ij._,,
kj= bL c.;
k kj-n+N

Jj-n=0
Jj=n<0
and notice that g.(r — T + iT,,0) = Ofori = N - n

and g.(r + iT,,0) = Ofori = N — n + 1 because ¥(¢)
for t € [0, T¢]. Then it follows that

j=01 tt

1
O -

577 [x(Be, 7, €) cos 8= (b, 7) sin 6]
k

N=1
= E ck,[bf;g,(r— T+iT,, 0)+b£ge(7+iTm 0]

im0

=ckN-nb£'ge(7'"nTc’ 9) '{"CkN-nbgge(T’" nT.+T, 9)

N=1
+ ) duge(r+(i=n)Te, 6)

iw

= ﬁ,; dkige(7+(i-")Tc’ 6)

. im0

and thus, the distribution of Io((p2(bx, 7, €) + ¥i(bx, 7:))"?)
1s the same modulo T, when 7, is uniformly distributed.

Let us now consider the particular case of a single interferer
K = 2 which may also be used to approximate the situation in
which we have a single dominant nterferer. In this case, the
correction term of the likelihood ratio is equal to

T (27 zwl/z N
So So Eexp( Nz S

ind

(3.6)

d2ig+(iTe— N, 0)> dg d\

(3.7
T, (2r 2W¥2 N .
So 50 E exp <—170-§)d2,-g_(m->\, 6)) d d\

where the expectation is over the independent and equiproba-
ble sequencedy, € { -1, 1},i = 0, - -+, N. The integrands in
the numerator and denominator of (3.7) are products of
hyperbolic cosines which do not lend themselives to further
simplification. However, if N (the number of chips) is large,
the distribution of the discrete random variable T¥  dsg.(iT
— X, 8) approximates the normal cuive, and further simplifi-
cation of (3.7) is possible. To justify this approximation, we
show that for each 8, A and each realization of

x(t)=[r,(t) —ew}’2a,(t)] cos §—ry(t) sin 6
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such that sup {lx(/)]t € (0, T)} < oo, the following
triangular array of random variables?

~el/n
;,,,.=d2,3 x(t=Nydt =1, n (3.8)

(t=D7T/n

satisfies the Lindeberg-Feller condition (e.g., [S])
lim 3 ElGuren)* T{|$ul>08€,}]=0  for every 6>0
L]

3.9

where ¢} = E[I7,, $1]. To check (3.9), first note that

n n
lim — 7 ¢2 =,|,'..T, ?2 x3(t")T?/n?
=] =l

=|lx|I? (3.10)

where t7 € (({ = 1/n)T, (iT/n)) and the first equation 1n
(3.10) uses the mean-value theorem on the ntegral of (3.8).
Therefore, for every ¢ > 0, there exists 72y such that for all 1
=isnandn > ny

gt} <1 {Zr3>602-0) . @1

But for each g > 0, we _an find ny s “hat for n > ny, we
have

T
I {%Is“mlbu} sT {; su’pzlx(t)|>u} =0. (3.12)

Hence, only a finite number of terms on the left-hand side of
(3.9) are nonzero, and since lim, o, ;‘,zll/efI = 0, (3.9) follows.

If p cos & — ¥ sin @ is a Gaussian random variable, then it is
straightforward to check that

1
EL(Vp*+y?) =exp <Z (Elp?] +E[¢2])>

Io ( \/é (E[p21—5[¢21)2+i- E’[m!/]) - G139

Hence, using the Gaussian approximation® to the distribution
of TN dauge(iT. — N, 0), the correction term in (3.7) reduces
to

e V2 = 2 IE = T 02 (N
So exp (Ng (_,+(>\)+q>(>\))> I (Ng V(E.(N)-2(N) +e,(>\)> dX
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N
<I>(>\)=E $2(iT,—\) (3.16)

(w0
and -

8.(N=2 3 E(Te-NS(Te=N).  (37)

in0

This structure is illustrated in Fig. 2. Note that there is
considerable simplification in this structure over that of Fig. 1.
In particular, each of the ** +°* and **~ "' channels involves
chip thatched filtering of the in-phase and quadrature compo-
nents followed by chip-rate sampling, quadratic accumulation,
memoryless nonlinear transformation, and integration over the
offset A. This latter operation can be implemented in parallel
form by decimating an M/ T,-rate sampler (rather than a 1/ T.-
rate sampler) where M is the number of points taken in the
numerical computation of the integral,

Further simplification of the correction term (2.9) is also
possible in the case X > 2 by using the Gaussian approxima-
tion. We can obtain an expression similar to (3.14) where the
integration is now over the hypercube [0, 7.]¥~". Analogously
tothecase K = 2, foreach8 = (6, -+, 0)and 7 = (73, * - *,
7x), the distribution of

X
E pi(br, Tk, €) o8 O — Y (by, 74) sin

k=2 k~1
' ok— 2 ij(bk) bj) Tk Tj)
I=2
is approximately Gaussian, and since [y, is un-orrelated with
ox» Y&, ) and ¥, both the numerator and the denominator of
the correction term in (2.9) are approximated by

SK"I X'd.,z <o drE

0.T,)

K k=1
* exp <_ E E ij(bln bj’ Tk Tj))

kw2 jm2

X
© > EL(Npi(bk, 1, €)= ¥2(by, 7))
k=2
Now, Eexp (—ZX_, Ejf;' by, by, 7, 7)) dépends only on
7 and on the chip waveform, and since if X ~ N(0, o), then
E exp X = exp 02, we have

K k-1 N
E exp (-— >SS Tylbus by, 7ey 1,))
k=2 ju2

oT,

where

Ee()‘)=§ EXT—)N) (3.15)

im0

} For the sake of notational simplicity, here we consider the case of a
rectangular chip waveform. In this case, &y = dyg (iT. — A, 6).

* It should be noted that the use of a central-limit theorem here is quite
different from the Gaussian approximations used in many previous analyses of
conventional single-user receivers. Here, we do not claim that the multiple-
access interference i1s asymptotically a white Gaussian process, however, we
do show via the Lindeberg-Feller condition (3.9) that the decision statistics in
(3.7) are conditionally Gaussian random variables as the number of chips per
symbol goes to infinity.

c Wy o cIN= _ 1192 >
30 exp (7\,—%(~_(>\)+¢(>\))>10 <Ng VE-(N =N+ (N) ) dX

(3.14)
1 K k=1 2
=exp <—E [< E 2 ij(bko b/’ Tk T/)> >
2 km2 ym2
i K k=1
=exp (-22 Er‘ij(bk, bj’ Tks T/)>
km) jm2
Ko xol We W, [7'k_7/|2+(Tc"lTk_7)D2
=TT IIex 2 T
km2 jm2 0 ¢
(3.18)




POOR AND VERDU: SINGLE-USER DETECTORS FOR MULTIUSER CHANNELS

55

CHIP
+ 2 )
' | MATCHED l(-) I——— +
P _T FILTER 1
/79,
@, I\ MEMORVLESS T
é—-|:>—— -rc -rc 0 NONUINEAR  |—+{10)« 0k by
.
+ +
+
CHip p
fq =] MaTCHED —{_(—)2_]—-— Te f L 1PV S)———
4
§ MEMORYLESS T
. qg_.':>__ | NONUINEAR }— Jnf-ax
COMBINER °
V%0,
+ A+ CHIP s
1 MATCHED R
° FILTER g B
Fig. 2. Correction statistic for single-user detector with long spreading

sequences.

where the last approximation follows by assuming that y(t) =
1/T"2 for t € [0, T;) and by neglecting an O(1/N?) term in

mately equal to

gthe exponent. Hence, the overall correction term is approxi-

Commaries,

0.7

kmd

Ny = 0.5 Hence, rather than using (3.19), we must take the
limit as N, — O of the original likelihood ratio (2.9). As 1n the
previous analysis, we will first focus attentton on the case of a
single interferer (K = 2).

e et o

o X We . Wi \/ - ’ '
.3l0.rc,Hexp N’%(::-«(Tk)'*"p(Tk)) Iy V}, (:+(Tk)“1’(7'.))'+6+(rk))

£ LU ’
Cmmeimar

kw2

0 K W d) ; wk\/; FY PR
(0.7} l\(o.Tc,HeXP }T;_;(-:-(Tk)'!' () ) 1o 1—\,—(2; (E_(r) - P (7)) 2+ _(Tk))

k=1 2 . —7;]2 = |re=7;])?
HCXp[ wkwl('”‘ 72+ (Te= 7= 7;0) >] dry -+ drg

ol NN? T
N B G | o
o Wi Wy T T+ (Lo~ [Tk —7;
R .
) /I-:]z: exp [NN% ( o >] dr, X

Notice that the term that couples the integrals in (3.19) is
asymptotically independent of r as N — . Hence, (3.19)
approaches the product of K — | (3 14)-like terms (substitut-
ing w, by wy). Thus, in this limiting case, implementation of
the mulitiuser correction term in the likelihood ratio involves
the implementation of only one chip-matched-filter/quadratic-
ccumulator section followed by multiple averaging channels,
bne for each different value of wy. Fig. 2 shows an
implementation of the correction statistic to be added to the
output of the single-user matched filter in the case of a single
interferer. The general structure is the same, except that the
memoryless nonlinearities output a process for each interferer
which is then passed through a separate logarithmic integrator.

8. Optimum Single-User Detection for High SBNR

@3 We now turn to another limiting case of the single-user
detector for which a simplified form of the likelihood ratio
exists, namely, the case when the power spectral density of the
additive Gaussian noise goes to zero. In the above case, we
saw that when the rest of the parameters are fixed, we can use
a Gaussian approximation as N ~ o, However, for fixed N,
the error between the expected values of the exponentials,
%eording to the true and Gaussian distributions, diverges as

Since the spreading codes of the interfering users are
modeled by the single-user receiver as equiprobable and
independent binary sequences, the correction term of the
likelihood ratio 1s given by (3.7) and the log-likelthood ratio 1s
(except for a positive multiplicative constant) equal to

N -
2 1 r,,(t)a, ) dt+-2—";:—/§

172

T, p2r 2wl ]
" log } c} Eexp (—N—— dy, g (iTe= N, e)> do d\
0

2wl o
- Eexp (—N— E dy,8-(iT, =\, 0)) dé da (3.20)
0

1=0

5 This is due to the fact that as the variance goes to infimuty, the error
between the distributions accumulates on the tails (the true random variable 1s
bounded) on which the expected value of the exponential largely depends.
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where the expectation is over the independent and equiproba-
ble sequence dy € {~1, 1}, = 0, , N. On taking the
limit of the correction terms in (3.20), we obtain

N

2wiz ¥
« Eexp ( X S dage(iT~ N, 0)) dé d\

0 =0

l ST“‘ZI
og | |
Ng=0 w"2 g 0

= lim
§ 2Ny Nos2
Cjexp| Wiy lge(iTe— N, 0)|> de d)\]

=0

li No_ lo
Nol:.no ZWIIZ g

li ———N N+1)log 2
N(l)rlloz (N+1) log

=0

— log sup {exp (Wl’z 2 leliT= N, 9)')}

=(wy/wy) V2 esup 2 1g.(iTe= N\, 0)]. (3.21)

Tel ag
8€(0.2x]

Therefore, in the limit as Ny — 0, the optimum single-user
detector for K = 2 in the case of unknown interfering codes
compares the test statistic

j BOQW di+ On/m)'? sup E g, (To=A, 0)|

0. c 10
g€(0.2r

66(02:] =0

to a zero threshold. Note that as might be expected, (3.22) is
also the limiting form of the generalized likelihood ratio test or
maximum likelihood detector (see Helstrom [6, p. 291}, for
example).

We now investigate the error probability of the test in (3.22)
when Np = 0. It was shown in [4] that when the delays,
phases, and waveforms of all users are known, the fully
centralized optimum detector achieves perfect demodulation
with probability 1 in the absence of background noise, This is
a nontrivial result, as is illustrated by the behavior of the
conventional single-user detector which becomes multiple-
access limited, i.e., the limit of its error probability as Ny = 0
is nonzero for sufficiently powerful interfering users. How-
ever, as in the present case, the conventional detector does not
have access to the delays, phases, or signature sequences of
the interfering users. So, the question arises as to whether an
optimum single-user detector can achieve error-free perform-
ance regardless of the energies of the interfering users without
knowledge of those parameters. The answer, in the two-user
case, is given in the affirmative by the following result which
does not put any restrictions on the signature sequences.

Proposition 3.1: Suppose K = 2 and w; > 0. If r(¢) =
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bsit) + SMA(1), b € {—1, 1}, then

sgn [2 S: rp(t)ay(t) dt + (wy/wy)1?

sup 2 18, (iTe= N, O)] = (w2/ W)
NEN.T) 7o
8€10.2r)

+su iT.=\, 0 =)
e %lg ( )l]
8€(0.2x)

(3.23)

with probability 1.
Proof: See Appendix.
In the general case of K > 2 users, the log-likelihood ratio
is proportional to [cf. (2.16)]

i
212 fo ra(Day(t) dt

0.74 SK-I 3‘wm sk-l

2
- E exp [—— IS 12+ 2 (b5 Sy, ] do dr

3.24)
where the expectation is over the independent sequences d =
{dv € {-1, 1};i=0, -, N, k =2, , K}. As in

(3.21), this expectation is dominated as N, ~ 0 by the atom

corresponding to the largest integrand, i.e.,

d* € arg maxg Q.(d, 7, 0) (3.25)
where
1
Q.(d, 7, 0)=(r—es, S“”(d))—i |SHA ()] (3.26)
and
N K
S, dy=3 S du@wi) (- (i= D) Te=1¢)
i=0 k=2
+ €08 (wet + 0 —werr). (3.27)

Since there ar. 2XW+ " possible sequences, it is necessary to
find an efficient way to carry out the maxirmzation in (3.25).
But (3 26) and (3.27) have the same structure as (2.3) and
(2 4), respectively, so we can apply the results of [2] to carry
out the maximization of (3.25) with linear complexity in N,
On taking the limit of (3.24) as M, — 0, we obtain the test
statistic

0T
2wl 30 ro(t)ar (@) dt+sup (7, 6) - sup @%(r, 6)  (3.28)

where QX(7, 8) = Q2.(d*, 7, 6). Even if these quantities are
obtained through efficient dynamic programming recursions
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as in [2], the main computational burden of (3.28) is the
maximization over [0. 7.J¥~! and [0, 2x]%~!, which imposes
severe limitations on its feasibility for even a moderate number
of users. However, note that, in performing the maximization,
the receiver is essentially acquiring the chip timing and carrier
phases of the interfering users. Thus, in practice, it would
normally be unnecessary to undergo a full search for the
maximizing 7 and 6 in each symbol interval since these
quantities will change little from symbol interval to symbol
interval. For this reason, (3.28) nught be reasonably efficient
to implement in approximate form.

[V LoCALLY OPTIMUM SINGLE-USER DETECTORS WITH WEAK
INTERFERERS

We have seen in the preceding sections that in multiple-
access environments with many users, the complexity of
optimum detection is increased considerably (over centralized
reception) when the unwanted users are unlocked. This ts true
even without sequence Jetection and regardless of whether the
interfering waveforms are known. However, one of the main
incentives for the study of optimum decentralized detectors is
the situation in which all or some of the interfering users are
comparatively weak, so that it may be impractical to provide
reliable synchronization for them. The objective of this section
is to derive locally optimum (up to a third-order approxima-
tion) decentralized detectors for reception in the presence of
weak unlocked users. As we shall see, such detectors can be
viewed as versions of the detector that would be optimum
without the weak interferers, modified to be robust against
small deviations from the nominal white Gaussian noise
statistics caused by weak multiple-access interference. As in
the preceding sections, we consider both the case in which the
waveforms of the interfering users are known, and the case in
which they are coded with binary signature sequences un-
known to the receiver. We will see here that the /ocally
optimum version takes care only of the nonwhiteness of the
multiple-access noise.

The approach we follow to derive locally optimum decen-
tralized demodulators is to obtain an asymptotic form of the
log-likelihood ratio for signal detection in contaminated whte
Gaussian noise given by the following result.

Lemma 4.1: Consider the following pair of statistical
hypotheses:

Ho: ri=s+ef+n, 1 € [ty 4]

Hl: I‘,=S,l+eﬁ,+n, IE [[p, [f] (4.])

where s! and s? are deterministic finite-energy signals, {n,} is
white Gaussian noise with spectral height o2, and {A,, ¢ € [t,,
t7]} in a symmetric random process such that || 7|| < B (a.s.)
for some constant B, and whose correlation function is
denoted by Cn = E[FA\], (¢, N) € (4, fr]*. Then the log-
likelihood ratio for (4.1) admits in the following expression:

g LR(9 == I, [(S,‘—s}’)—c—,)z

N i i
y’ Cials)=s?) d)x] (r,-z s} —-Es?> dt+ O(e?).
%

(4.2)

Proof: Using the Cameron-Martin likelihood ratio for-
mula, we obtain

log LR (¢)=log %-(—2

3
4.3
o (€) 4.3
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where
1 .
D(e)=E [exp (-——T(Hs'+ en))?
20

H
-2 EI (S';+eﬁ,) d"{))] i=0,1 (4.4)
p
where the expectation is over the ensemble of sample functions
of {f, t € [, tr]}.

In order to derive (4.2), we take the Taylor series expansion
of (4.3) around the origin. Since #; is a symmetric random
variable, it follows that D;(—¢) = D,(¢). and hence the odd
terms in the Taylor expansion of D,(¢)], .o and log D,(€)|, =0 are
equal to zero.

Using the fact that ||7i]] < B a.s. and the Schwarz
inequality . it follows that the expectation of every coefficient
in the series expansion of the exponential in (4.4) exists, and
we can write

€2 1 ¢y ‘ 2
Di(e)=Di(0) [1 +=E [(;—z &p (= s1) dt)

1
= ﬂﬁ“z] +0(e“)] . (4.5)

Now, since log (1 + x) = x + O(x?), we obtain

l)ﬂé)__ l)NO) Ez <-l. y L )Z
log Do(e)"'log Do(0)+ 5 E [ = S‘p A(ry~s}) dt

_<;13 |7 ri-st dt>2] +0l) (4.6)
p

and (4.2) follows straightforwardly. O

Notice that the stringent conditon }j7f| < B (a.s.) allows a
straightforward proof of Lemma 4.1 and 1s satisfied tn the case
in which we are interested. namely,

M K
A=Y D bDs(t=iT~7); be(i) € {-1, 1}
im=M kwD+1

o 4.7)

If the waveforms {a,(t), k = D + 1, -+, K} are known by
the receiver, then the autocorrelation function of 77 with
support in R? (for M = o) is equal to

1 K
c;‘_’;‘=?cos @ =N Y, wR(=N)  (4.8)

kuD+1

where

T
Re()= | a(s=Day(s) ds. 4.9)
0
If the waveforms of the interfering users have the form in
(3 1) and the code of each user is unknown by the receiver and
assumed to be equiprobably distributed among all {~1, 1}
s.juences of length AN, then the autocorrelation is

cf:’f:ffcos (we(t=N)) f; we¥ (=2)  (4.10)

k=D+1

where the autocorrelation of the chip waveform is denoted by
Y() = [feY(s)(s ~ 0 at.
The one-shot single-user detector can be obtained readily
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from the result of Lemma 4.1. Since the signal of user 1 is
antipodally modulated, we have

sl=s9=2V2wa\(t) cos (wet+6,)
and (4.2) becomes

4\/;, T
log LR=— So ro(t)

I & T
: - W -
[a,(t) % Tk% ) 50 @ (MRt =) dx] dt
2

+0 (nI3z>nI< wi). 4.11)

Hence, the locally optimum one-shot single-user detector 1s
a wonventional correlation receiver in which ay(¢) 15 replaced
by a,(t) — (L'NoT) £, we [§ @i Rt = N) dN, t € [0,
T1], i.e., the pseudosignal is the output in [T, 27} of a causal
linear filter, driven by a,(¢), and whose impulse response is
equal to 8(t=T) ~— (I/NoT) ZE_, wR(t—T). If the
signature sequences are unknown, the impulse response is §(¢
- T) — (1/NoT) X, wi¥(t = T'), which amounts to a
muld smoothing of the signal replica of the user of interest.

The locally optimum detector that locks to D of K users 1s,
in fact, a generalization of this conclusion. Using Lemma 4.1,
it can be shown (see [3, ch. 5] for details) that the locally
optimum D-user detector is a centralized detector whose
correlators use replicas of the unmodified waveforms of the
users of interest. However, the input is processed by a causal
filter that whitens the interference due to unlocked users, and
whose impulse response depends on the autocorrelation
function and signal-to-noise ratio of each interfering signal.
This requires a modification of the DP algorithm to account
for the intersymbol interference introduced by the prefilter,
and results in a complexity of O(2%P) as opposed to O(22) for
the corresponding algorithm that neglects the additional X —
D interferers.

V. SUMMARY

In this paper, we have obtained decentralized single-user
detectors which take into account the presence of interfering
users. The general decentralized demodulation problem is one
of sequence detection in additive colored non-Gaussian noise,
and results in nonlinear detectors whose decision algorithms
do not admit recursive forms and hence are more complex than
their centralized counterparts. Important reductions in com-
plexity occur when attention is focused on one-shot single-user
detectors.

The general form of the single-user likelihood ratio obtained
in Proposition 2.1 is equal to the single-user likelihood ratio
affected by a correction term which depends on both the in-
phase and quadrature components of the input. Both the case
where the baseband interfering waveforms are known and the
case where they are coded by an unknown signature sequence
have been studied.

Under the assumption that the assigned waveforms are
signature sequences with N chips per bit, we have obtained
limiting forms of the correction term for N 2 | and for Np =
0. In the first case, the correction term depends on the received
waveform only through the functions Z.(\), $(\), and 8.(N\)
which represent the /, norms and inner product, respectively,
of the subintegrals of an NV partiticn (with offset A € [0, T])
of the in-phase and quadrature components of the received
noise process under both hypotheses. The correction term
when Ny = 0 is best illustrated in the single-interferer case
where it is obtained through the maximization over the relative
phase and delay of the /, norm of the above subintegrals. It has
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been shown that this detector (which assumes knowledge of
only the chip waveform and energy of the interfering user)
achieves perfect demodulation in the absence of Gaussian
noise regardless of the energy of the interference, thus
avoiding the multiple-access limitation that plagues the con-
ventional receiver. Using dynamic programming, the single-
user detector can be implemented in linear time in N
however, its main computational burden is the maximization
over [0, T.J%¥~! and [0, 27}¥~! needed in the correction term.
Using an asymptotic form of the log-likelihood ratio for
signal detection in contaminated white Gaussian noise, we
have derived locally optimum detectors up to a third-order
approximation in the amplitude of the interfering users. The
locally optimum one-shot detector has been shown to be a
singie-user correlation receiver which uses a smooth replica of
the signal of interest It has been shown in [3] that this
approach can be generalized to the case of partial decentraliza-
tion (D > 1), resulting in robusufied versions of the
centralized D-user receiver, which may offer substantial
computational savings over the optimum K-user receiver.

APPENDIX
PROOF OF PROPO3ITION 3.1

We assume that the bit transmitted by user 1is b = 1, the
proof being identical in the antipodal case. For notational
convenience and without lost of generality, we suppose that
the relative delay of the interfering useris0 < 7; < T¢; then it
follows that

N
ar(by, bF, t=m)=Y dy(t~iT.+N) (A1)

in0
where \; = Te — 73, dy = cyn-1bf, and diyy = cbf fori =
0, N - 1.Let8 = 8, + w7, — 6y; then it 1s easy to show that

.
S ro(t)a () =wl+wl'? cos 8
0

| a0l b, t=myar (A2
g+(iTc=X\, 8)=wl’% cos (8 +8B)

T
|, calot, 08, t=rp-iTee N dr (A3)

and

g-(iT.= N, 8)=2w!"2 cos §

. S: (Y —iT,+N)y dt+g.(iTc— N, 6). (A4)

We show now that

N
sup > [g.(iT: =\, O)f = wi™ (A.5)
NEW.T] o
4€(0.27)

To that end, using (A.1) and (A.3), we obtain for every A €
[0, T

N
sup 3 gL (iTe= 1, 0)]

se02r [

w2 3 1 aaot, 08, - myie- T vy
2|, ottt o8, 1=y (T

(=0
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N
=wj2 3

I, T A t=JTet MW= iTe+ M) dzl

t=Q /=0

TN N . .
:3 swle 30 3 W =iTe+ MY (= iTe+N)| dt
§ =0 yu0

TN 1/2
swi? (Xo E Yt =T+ N;) dt)
j=0

- . Sri YAt =iT.+N) dt) " wis (A.6)
§ 0 =0 ‘ :

where the last two equations follow from the Schwarz
inequality and from the relationship {Je (Y2t + 5) + Y¥(t -
Te + s dt =\ Jc¥t) = I/N,0 s 5 = T, respectively.
But the right-hand side of (A.6) is achieved when N = Ay,
hence, (A.5) follows. Consequently, in order to show that the
sign of the log-likelihood ratio is positive, one has to prove
that

%

T
2w+ wy+ wl2wl? s 2a, (e (bt b8, t—)
(i}

N
- cos B dr—wl? 2 lg-(iT.—X\, 0)|>0 (A.7)

inQ

lfor allA € [0, T.Jand 8 € [0, 27]. Using (A.3) and (A .4), we
obtain

-
2w+ wy+wl2wl? 5 2a; (o bk, bR, t—7) cos B dt
0 1 03

1, - wy? EVJ lg-(iTe=A,-0)|

=0

=2w +wy+ wi2w)?

.
| 2010006}, b, 1= 72) cos B a

3 N

w3

=0

- oz (bh, b, t—73) cos (B+B)NY(~iT +N) dij.

oT
3 (2w!a;(t) cos 8+ wY?
9

(A.8)

The last term on the right-hand side of the above equation

‘an be bounded as follows:

v : T

E ig @wl2ay(r) cos 0+ wiay (b, bE, t—1)
0

120

ccos (Q+BNY(—iT.+N) dt
N r

52 So [2wi2a,(f) cos 0+ wi2ar (b, bE, t—72)
1m0

- cos (0+8)] |y —iT.+N)| dt

o7
= So [2wl2ay (1) cos 8+ wi e (bE, bE, t-72)
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N
©cos (0+B8) D, [Y(e—iT.+N)| at
i=0
r
< [Ko Qw!a,(t) cos #+ wiay(bE, bF, t-17)

172 TN 172
- cos (0+8))? dt] [So E Y2 —=iT,+N) dt]

i=0

= [4w. cos? 0+ w, cos? (§+B) + 4wl 2w)/?

T 172
+ ¢cos 8 cos (0+B) SO lh(t)a;(b%, bg, t—-1;) df] .
(A.9)

Since |{I ai(t)aa(b, bF, ¢t — 1)) dt| = 1, we can denote |
a(t)on(bt, b%, t - 1) dt = cos «, and using (A.9), the
right-hand side of (A.8) can be lower bounded by

T
2w+ wy+ wl2wl2 So 2ay(t)oy (bL, bE, t—75) cos B dt

N
- S

in0

+ (b, bR, t=1) cos (6+B))(t—iT.+N) dt

-
g (2wla,(t) cos 9+ wi?
0

22w+ wy+2wl’? cos o cos B
- wi’2(4w; cos? 6+ w, cos? (6+8)

+4wl?wl’? cos § cos (6+B) cos a) '/ (A.10)

Now, since 2wy + wp + 2wl2wl2 cos « cos 8 > 0, the sign
of the right-hand side of (A.10) is equal to the sign of

Qwy+wy+2wl2wl/2 cos a cos §)?

— (4w, wy cos? 0+ w2 cos? (8+ )
+4w,w2wl’? cos 6 cos « cos (6+ )]

= 2w, +2wl2wl’2 cos o cos §)2+ 4w wy(1 —cos? §)
+wi(1—cos? (§+B)) +4wawl2wl?
- cos a [cos B—cos & cos (6+B)]

= (2w +2w}?w}’ cos & cos B)2+ 4w w; sin? §
+ wsin? (8 +B) + 4w, wi2wi2sin 6 sin (0 +B) cosa

= (2w, +2wl2wl2 cos & cos B)?

+(wy sin (8+B) cos + 2V w; w, sin )2

+ (w, sin (8 +B) sin «)2, (A.1D

Therefore, we have shown that (A.10) and, consequently,
the left-hand side of (3.22), are nonnegative. Moreover, the
right-hand side of (A.11) is equal to zero only if

(A.12)

but since 8 = 0; + w.r; — 6 is uniformly distributed, (A.12)
occurs with probability zero if wy > 0.

2w +2wl2wl/? cos o cos B=0,
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Abstract — We consider an asynchronous code-division multiple-access
environment in which the receiver has knowledge of the signature wave-
forms of all the users. Under the assumption of white Gaussian back-
ground noise, we compare detectors hy thelr worst case bit error rate
in a low background noise near- far environment where the received en-
ergles of the users are unknown to the receiver and are not necessarily
similar.,

Conveutional single-user detection In a multiuser chzunel is not
near-far resistant, while the substantially higher performance of the op-
timum multiuser detector requires exponential complexity in the number
of users. Wz explore suboptimal demodulation schemes which exhibit a
low order of complexity while not exhibiting the impairment of the con-
ventiona} single-user detector. Attention is focused on linear detectors,
and it is shown that there exists a linear detector whose bit-error-rate
is independent of the energy of the interfering users., Moreover it is
shown that the near-far resistance of optimum multiuser detection can
be achieved by a linear detector. The optimum linear detector for worst-
case cnergles is found, along with existence conditions, which are slways
satisfied in the models of practical interest.

I. INTRODUCTION

HE near-far problem is the principal shortcoming of current
radio networks using direct-sequence spread-spectrum multiple-
access {DS/SSMA) communication systems. Those systems achieve
multiple-access capabihity by assigning a distinct signature waveform
to each user from a set of waveforms with low mutual crosscorre-
lations. Then, when the sum of the signals modulated by several
asynchronous users is received, it 15 possible to recover the infor-
mation transmutted by correlating the received process with replicas
of the assigned signature waveforms. This demodulation scheme 1s
conventionally used in practice, and its performance 1s satisfactory if
two conditions are satisfied: first, the assigned signals need to have
low crosscorrelations for all possible relative delays between the data
streams transmitted by the asynchronous users, and second the pow-
ers of the received signals cannot be very dissimilar. If either of these
conditions is not fulfilled, then the bit-error-rate and the antijamming
capability of the conventional detector are degraded substantiaily. The
reason why system performance 1s unacceptable when the recetved
energigs are dissimular even with good (1.e., quasiorthogonal) signal
constellations, is that the output of each correlator or matched fil-
ter contains a spurious component wlich is linear in the amplitude
of each of the interfering users. Thus, as the multiuser interference
grows, the bit-error-rate increases until the conventional detector is
unable to recover the messages transmitted by the weak users.
Due to the severe reduction of the multiple-access capability and
the increase of vuinerability to hostile sources caused by the near-far
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problem and its ubiquity in networks with dynamically changing
topologies (such as mobile radio), its alleviation has been a tar-
get of researchers in the area for several years. However, success
has been very limited and the only remedies implemented in prac-
tice have been to use power control or to design signals with more
stringent crosscorrelation properties, which as we have noted, does
not eliminate the near-far problem.

The viewpoint of this paper is that the near-far problem is not an
inherent shortcoming of DS/SSMA systems, but of the conventional
single-user detector, The optimum multiuser detector was obtained
in {1] and was shown to be near-far resistant in the sense that a
(very good) performance level can be guaranteed regardless of the
relative energy of the transmitters, The optimum multiuser detector
consists of a bank of matched filters and a Viterbi algorithm whose
complexity is exponential in the number of users. In decentralized
applications (where each receiver is only interested in demodulat-
ing the data sent by one transmitter), it is possible to drastically
reduce the c. .nplexity of the optimum receiver (without compromis-
ing performance) by neglecting all but the comparatively powerful
interferers. However, in this paper we propose a receiver (which we
refer to as the decorrelating receiver) whose complexity is only lin-
ear in the number of users, and whose bit-error-rate is independent
of the powers of the iuterferers at the receiver. Moreover, the decor-
relating receiver achieves optimum near-far resistance (in a sense
to be defined precisely in the sequel). The only requirement is the
knowledge of the signature waveforms of the interfering users, and,
in particular, no knowledge of the received energies is required, in
contrast to the optimum receiver.

This paper generalizes the results obtained in [7] in the case of
synchronous code-division multiple-access channels. Other recent at-
tempts to derive detectors for multiuser channels include [9]-{11].

The multiple-access channel model considered in this paper is
spelled out in Section II, as well as the general structure of the
proposed detector. In Section III, we present the performance mea-
jure of interest, the near-far resistance and we show that the near-far
resistance of the optimum multiuser detector can be achieved by a
linear detector (the decorrelating detector), which is explicitly ob-
tained in Section IV, as well as its implementable version as a linear
time-invariant system. Section V gives a numerical comparison of the
error probabilities of the decorrelating receiver and the conventional
receiver in a scenario of practical interest.

II. MurTiuser CoMMUNICATION MODEL
Let the receiver input signal be

r(¢) =S({,6) + n(t) @.1)

where n(t) is white Gaussian noise with power spectral density o2
and

M X
Sit,b) = Z Zbk(i)\/wk(i)ik(t -iT-7) (22

t=—=M k=]

is the element of £, (the Hilbert space of square-integrable
functions) which contains the information sequence b =
bW = [(bi@,- bk be(D € {-1, 1}k =1, K; i =

0090-6778/90/0400-0496301.00 © 1990 IEEE

ey




LUPAS AND VERDU: NEAR-FAR RESISTANCE OF MULTIUSER DETECTORS

si{t) ‘ s,(t) [
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Fig. 1. Example of signature waveforms which can violate the LIA,

| =M, -, M}, 5:(2) is the normalized signature waveform of user
i k and is zero outside the interval [0, 7], and w(i) is the received
energy of user &k in the ith time slot. Let N = 2M 4+ 1 be the
length of the transmitted sequence. Without loss of generality it is
assumed that the users are numbered such that their delays satisfy
0<n £+« 1% <T. The normalized signal S(t,d) is the re-
ceiver input signal corresponding to unit energies.
4 Define the vector space L = {x = k(~-M), - x(M)] =
,!((x.(-m,m,xx<~m1,~..tx.(m,m,xww)]]’, x¢(i) €R,
$k =1, K, i = =M, .- ,M}, (each element of which can be
equivalently viewed as a sequence of N (Kxl)-vectors or as one
single (NK x1)-vector), and define the (k, i)th unit vector u*! in
L with components u**/(/) = O0xjoi. Note that the set of possible
transmitted sequencesiv is a subset of L, obtained by restricting the
compouents of the vector x to take on the values £1. Let (-, )
denote the usual inner product on £,, i.e., the integral of the product
iover the region of support, with induced norm || - ||. Henceforth, we
#make the following assumption on S(¢, b).
1) Linear Independence Assumption (LIA):

VveL,v#0= ||5¢, v #o. (23)

In other words, no matter what the received energies are, the re-
ceived signal does not vanish everywhere if at least one of the users
1145 transnutted a symbol. This condition fails to hold only in patho-
siogical nonpractical cases with very heavy crosscorrelation between
the signals, such as the two-user example in Fig. 1. There if the de-
ldy between the users is T2, the received signal can be identically
zero although transmissions have been made [this happens if, for all
iy b2(i) = —by()]. It is shown in Appendix II that such a situation
will arise with probability zero if the a priori unknown delays are
?t:niformly distributed, which is the case in the asynchronous channel
Zised by noncooperating users. Basically, in order to violate the LIA,
?31 subset of the users must be effectively synchronous and the mod-
ulating signals of this subset have to be heavily correlated. The LIA
will be in effect in the rest of the paper. If it is removed all the given
results can be generalized in a manner analogous to the treatment of
the synchronous transmission case (7].

The sampled output of the normalized matched filter for the ith bit
gf the kthuser, i = -M, .-, M, is

iT+T 41,
ye(i) = / r(0)5e(t ~iT — 1) dt 24
T+ )
o0
=/ S, b)se(t —iT = 1) dt
-_
o0
g + / n()35g(t = iT — 1) dt (2.5
i -—

where the second equality is valid since the signals are zero outside
{0, T). 1t is well established (e.g., [1]) that the whole sequence y of
outputs of the bank of X matched filters, with components y (i} given
by (2.5), fork =1,---,K,i =~M,---, M, is a sufficient statistic
for decision on the most likely transmitted information sequence b.

e multuser demodulation problem which needs to be solved at
§; recerver 1s to recover the transmutted sequence b € L from the

quence y € L. Motvated by the state of the art— where the choice
t1es between the optimum multiuser detector, which is of exponential
complexity and the ad hoc single user detector whose performance
degrades to zero for sufficiently high interference energy— we define
a class of simple detectors and opumize performance within this
class, 10 obtain an acceptable error probability versus complexity

%adeoff.
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A linear detector for bit i of user k is characterized by v*i ¢ L.
The decision of the detector is given by the polarity of the inner
product of v%+/ and the vector y of matched filter outputs, which is
equal to

MK o
3 Skl = / S(t, wb)S(e, vEiydt +my, (2.6)

I==M j=I| -0
= (§(t, wb), S(t, v 1)) + ng 2.7

where for any information sequence b, wb will denote the sequence
of amplitudes wb = {[\/wi()by(i),+ -+, VW (Dbx(D), | =
-M,...,M}. n,, is the noise component at the output of the cas-
cade of matched filter, sampler and detector, hence is = Gaussian
zero-mean random variable with variance given by

2 [= o)
Eln; ;1= ka(l)vj(i)/ o35t ~IT — %)5,(t =iT —1;)dt
LI —co

=g? "S(I, Uk'I)"2 . (2.8)

The receiver decides on the ith bit of the kth user according to the
rule

M K
by =sgn Y ok hy;0) 2.9)

{==M j=\
= sgn((S(¢, wb), S, V) +me). (2.10)

Wherever it 15 Jlear from the context, the superscripts &, 1 will be
omitted,

2) Matrix Notation. 1t is convenient to introduce the following
compact notation. Define the K+K normalized sigaal crosscorrela-
tion matrices R (/) whose entries are given by

o0
Rk,(1)=/ Skt = )5, (t +1IT =7)dt. (2.11)

-00

Then, since the modulating signals are zero outside [0, T')
R =0V|>1, (2.12)

R(-)=RT(), (2.13)

and, if the users are numbered according to increasing delays, R(1)
is an upper triangular matrix with zero diagonal. Also let W (/) =

diag ([ /w1 (1), -+, VW (D]). With this notation the matched filter
outputs for/ = {—M,- -+, M} can be written in vector form as (cf.,
(8D

y) =R(-HW({ + Db + 1) +ROW ()
R -1 -1 +nl), (2.14)

as can be seen for each component by inserting (2.1) into (2.4). We
adopt the convention that 5(—M — 1) = b(M + 1) = 0. n(}) is the
matched filter output noise vector, with autocorrelaion matnx given
by

Eln(in™ ()] = oa*R(i - j). (2.15)

The entries of the matrices R(f), f = -1, 0, 1 are obtained at the
receiver by cross-correlating appropriately delayed replicas of the
normalized signature waveforms according to (2.11). Note that no
additional complexity is hereby required of the receiver, since knowl-
edge of the normalized signature waveforms and the capability to
lock onto the respective delays are necessary for matched filtering
and sampling at the instant of maximal-signal-to-noise-ratio

In contrast to (2.5) the asynchronous nature of the problem is
clearly transparent in (2.14). To make this notation more compact

o
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Fig. 2. Equivalent synchronous transmitted sequence.

we define the NK «NK symmetric block-Toeplitz matrix ® and the
NKsNK diagonal matrix ‘W, as follows:

(RO R(-) 0 - 0
R(l) R(®) R(-1)
®R=] o rW RO - 0 |» @8
R(~1)
0 .- 0 R RO

W = diag ([\/ w1 (~M), -+, \/ W (=M), -+,
VWMD), g (D). (217

In this notation the matched filter output vector y depends on b via,
from (2.14)

y=RWb +n. 2.19)

The matrix ® can be interpreted as the cross-correlation matrix
for an equivalent synchronous problem where the whole trans-
mitted sequence is considered to result from NxK users, labeled
as shown in Fig. 2, during one transmission interval of duration
T. = N«T + ¢ — 71. Tnen the results presented here for finite
transmission length can be derived via analysis of syachronous mul-
tiuser communication, as done in [7]. However, the approach taken
in this paper is more general and gives more insight into the nature
_of the problem. The limit N - oo is considered in Section IV-B.

The decision made on the ith bit of the kth user at the output of
the detector v is:

br(f) = sgnvTy = sgnvT (RWb +n). (2.20)
As for the inner product, for allx,y in L
8(t,x), $(t, ) =xT®y.” @.21)

It can be seen from (2 21) and from (2.3) that ® is positive definite.

HII. Near~-Far Resistance

The main performance measure we are interested in is the bit-
error-rate in the high signal-to-background noise region. Thus, even
though the background thermal noise is not neglected, our main focus
will be on the underlying performance degradation due to multiple-
access interference. This performance degradation is conveniently
quantified by the asymptotic efficiency which was introduced in
{1]-(2), and is defined as follows. Let Py (o) denote the bit-error-rate
of the kth user when the spectral level of the background white Gaus-
sian noise is o2, and let ¢x (o) be such that Py (0) = Q(\/ex(0)/0).}

Then, ex (o) is actually the energy that the kth user would require
to achieve bit-error-rate P,(¢) in the same white Gaussian channel
but without interfering users. Hence, we refer to ex (o) as the ef-
Sective energy of the kth user, and the efficiency or ratio between
the effective and actual energies ex(o)/w; is a number between 0
and 1 which characterizes the performance loss due to the cxistence
of other users in the channel. Thus, the asymptotic efyiciency (for

1Q(x) = Lw(l/\/z—r)e"'}” dv,
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high SNR) of a transmitter whose bit-error-rate curve and energy are
given by Py(o) and wy, respectively, is

. - Wk
= sup {0 <r<i ah_rpoPk(o)/Q < a—-) < oo} (3.1

where the last equation follows immediately upon substitution of
Py (0) by its expression in terms of the effective energy. In order
to visualize intuitively the asymptotic efficiency, note that the log-
arithm of the bit-error-rate Py(o) decays asymptotically with the
same slope as the logarithm of the bit-error-rate of « single-user
with energy nxwy. Therefore, if lim,_o Pi(0) >0, (i.e., there is
an irreducible probability of error even in the absence of background
noise), then the asymptotic efficiency is zero. Conversely, nonzero
asymptotic efficiency implies that the bit-error-rate goes to zero (as
o — 0) exponentially in 1/02.

While asymptotic efficiency and low-noise bit-error-rate are equiv-
alent performance measures, asymptotic efficiency has the advantage
of being analytically tractable and of resulting in explicit expressions
for the detectors we are interested in. For example, while the prob-
ability of error of the optimum multiuser detector does not admit an
explicit expression, its asymptotic efficiency is given by [2}

—_ 1 H 3 2
Mhai = (s moin IS¢, woll (32

-where Z, is the set of error-sequences ¢ = {¢(/) € {~1,0, 1}¥, i =

=M, -, M, (i) = 1} that affect the ith bit of the kth user. It was
shown in [3] (see also (15]) that the numerical computation of the
asymptotic efficiency of optimum muitiuser detection given by (3.2)
is an NP-complete combinatorial optimization problem.

In an environment where the transmission energies change in time,
e.g., if the transmitters are mobile, a performance measure of interest
for any detector is its Ath user near-far resistance, 7.;, which is
defined for each detector as its worst case asymptotic efficiency for
bit / of user k over all possible energies of the other (interfering and
noninterfering) bits, i.e.,

e = _inf o (3.3)
w20

Uik, iy

In our definition of near-far resistance we model the most gen-
eral case where the energies of the users are allowed to be time-
dependent. This captures the worst case operating conditions of the
detector, which are, for example, encountered in mobile radio com-
munication, due to positioning and tracking varjations. In the case
where the energies are constrained to he arbitrary but nonvarying
the present near-far resistance is a lower bound. That case is not
amenable to closed-form analysis, since one has to deal with a com-
binatorial optimization problem.

For illustration consider the two-user case. If the user energles are
constant over time, i.e., w (f) = wy, wy(i) = w,, the asymptotic
efficiency of the optimal multiuser detector given by (3.2) reduces to

(¥3H

n; = min {1. L+ g% -2 max {lp:zl,lmnl}—f"‘:,
w2 YW

and hence

Tan £ min m =min{l - %, 1 - o},

wi :Oﬂ.ﬂ. 2
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Fig. 3 Asymptouc efficiencies in the two-user case for infinite transmitted
sequence length, when the user energies are constant over time (here we
chose |pia}, o2t = 0.3, 0.5).

and analogously for user 2 where py;; = Ry2(0) and py; = Ryp2(1).
The dependence of u, for constant energies on the energy ratio is
shown m Fig. 3. Note that the opm..al multser detector 1s near-
far resistant, and 1n fact has an asymptotic efficiency of umty for
suffictently powerful interference ([2]). Note also that in this case
three different error-sequences mummize (3.2) for different values of
w2 /W), as can be seen from the discontinuity points of the denivative
of ». The minimum of n over constant eners 2S, 9 mi, iS an up-
per bound on the near-far resistance of optur .n multwser detection
1, which 1s the mimmum asymptotc. efficiency over unconstrained
energies.

The near-far resistance of the optimal multiuser detector is im-
portant since 1t 1s the least upper bound on the near-far resistance of
any detector, and a measure of the relative performance of any sub-
optimal detector. From (3.2) and the defimtion of near-far resistance
it is equal to

1 -
wT= i —— min ||S(¢, we)||? 35
ETR] w,l(lll)fZO wk(i)erglz?t"( wé)|l (3.5)

Uik, iy

1 2
= inf min S(r, we) (3.6
w20 ¢€Z / ;
Ol Wi (D)

= 1 ¢ 2
= jnf IS X))

7=t

In Section IV, we obtain a closed-form expression for (3.7) as the
reciprocal of tiie (k, i)th diagonal element-(see footnote 2) of the
inverse of ®. Hence, the near-far resistance of optimum multiuser
resistance is guarauteed to be nonzero because of the linear indepen-
dence assumption of (2.3), which ensures that ® is invertible.

We now turn to the performance analysis of the linear detectors
introduced above. The probability of error at decision upon by (i) of
the linear detector v is, from (2.10):

P(i) = P(be (i) # bi(i)) (3.8)

= P(({8(t, wb), S(t,v)) + nx.,; <OJbe(i) =1). (3.9)

The equality follows since the hypotheses +1, -1 are assumed
equally likely. Let B be the set of possible transmitted sequences.
From (2.8) n,; is a zero-mean Gaussian random variable with vari-
ance 2|S(t, v)||?, heace the probability of error in (3.9) is a sum ot
Q-functions, one for each possible interfering bit-combination. For
o — 0 the Q-function with the smallest argument dominates the er-
ror probability, hence from (3.1), since the expression below can be
shown' (cf. [15]) to be upper bounded by 1, the asymptotic efficiency
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achizved by the linear detector v for the ith bit of the kth user is

max® 40 min S wb), 8¢t,v))
’ IS¢, v)l

Nk, (V) = . (3.10)

O
Knowledge of the asymptotic efficiency of a linear detector is equiv-
alent to knowledge of the worst case probability of error over the
bit sequences of the interfering users, since this error probability,
which is a Q-function, is set equal to Q(+/nx,;(v)Wi(i)/0) to obtain
(3.10).

For illustration consider the conventional single-user detector in
the two-user case. We have v =u® (recall that u*/ is the (k, i)th
unit vector in the space L of linear detectors). If the user energies
are constant over time, i.e., wy(i) = wy, wo(i) = w,, the asymp-
totic efficiency of the conventional single-user detector 1s found from
(3.10) to be

n§ = max’® {0’ 1= (leiz] +IM|I)E} (3.11)

o

and analogously for user 2. The dependence of n{ for constant ener-
gies on the energy ratio is shown in Fig. 3. Note that the asymptotic
efficiency of the conventional single-user detector is zero fo: suf-
ficiently high interference energy (Ww2,/Wi > 1/(lpiz| + loai -
This implies that its near-far resistarce is zero, which is what we
want to remedy.

There are three quantities of interest in this communicaticn envi-
ronment, on the one hand the transmitted bit-sequence and the set of
energies, both of which depend only on the transmitters and deter-
mine the operating points for the receiver, and on the other hand
the data-processing detector v at the receiver, which we called a lin-
ear detector. In determining which linear detector to choose at the
receiver a useful proced -e is the minimax approach, in which the
design goal is to optim.. he worst ce* = performance of the receiver
over the class of operating points. Thus we are interested in finding
the maximin linear detector, whose worst case performance over all
allowable input sequences is the highest in the class of linear detec-
tors. The following result quantifies the performance of the maximin
detector, in the sequel denoted by v*.

Proposition 1: There exists a linear detector (which is indepen-
dent of the received energies) that achieves optimum near-far resis-
tance (i.e., the near-far resistance of the optimum multiuser detec-
tor). ()

Proof: From (3.10) the asymptotic efficiency of the linear de-
tector v is

. (S, wb), S(t,v))

— 2
”""(v)'w,,(i) max* ¢ 0, E“é? RS (3.12)
br(h)=1
. (S, wb), 8(t, v)) }
X min ~max? {0, Y L 1(3.13)
st O B
o b WG )
iy s {0 | .

br()=1

where in the last equality we have used the compact matrix notation
of (2.21) for simplicity. We are interested in the lirear detector with
the highest worst case asymptotic efficiency, i.e., whose near-far
resistance is

*)y= su inf y 3.15
M, i(v*) velz w;‘(I)ZO %,1(¥) (3.15)
13¢.m)f %0 Uubsf(k, )
= sup inf min — max? o,m}i
vel  wh20 b€8  wi(i) W ®y
T Rva Dk, Beh=1
S e/
(3.16)




500

TRy
= sup inf maxt {0, } (.17
vel YEL vT Ry
Y Rezo YeD=1
¥y ®y

2 .

=max‘ {0, su inf (3.18)
m ver YeL BTGy

vavyo rri=1

where we have set ¥; (1) = b;(1)+/w(1)/\/w«(i) for the third equal-
ity. Let M(v,») de{wte the penz{]tyjﬁm/cuon yT®v/VwT Ry where
the first argument is from the set of detectors and the second from
tlie set of operating points, both specified in (3.18). We show in
Appendix 1 that M(v, y) has a saddle point, i.e.,

T T
. y' Gy . y @y
su inf = inf su y  (3.19)
ueE veL TRy  rAL vEg WwT Qv
Vv ya(iy=t 2= Ty
which establishes the existence of v* and hence
-
—_— 2 . y'®y
p*y=max* {0, inf sup ———= (3.20)
s I Iy
yi(i)=1 VT(RV;(D
=max? {0, inf TRy 321
y€L
ya(h=t
= i S t, 2 322
jnf i, »ll (3.22)
yrth=t
=TT (3.23)

where the second equality is obtained in (A.1), the third line follows
since ® is nonnegative definite and the last equality was obtained :(x))
3.7.

The reason why the near~far optimum linear receiver achieves the
same near-far resistance as the optimum receiver can be understood
as follows. Let © be the set of multiuser signals modulated by all
positive amplitudes, i.e., @ = {S(¢,»), ¥ € L} and let Z denote the
subset of  such that the amplitude of the ith symbol of the th user
is fixed to 1, i.e., £ = {S(2,5), ¥y €L, ye(i) = 1} (note that = is
a convex set, and because of the LIA it does not include the origin).
Since the penalty function in (3.18) is invariant to scaling of v and
the operator ® is positive derinite, (3.18) can be rewritten as

Ti(v*) =max’ {0, sup jnf See,»), 8t,v))

1 4
151ty =t 2el)=t

(3.24)
=max* {0, sup inf (y,v) . (3.25)
lvfn| YE=

Therefore the kth user deconielating filter can be viewed as the unit-
norm multi.ser waveform whose minimum inner product with the
elements of Z is highest. But since = is a convex set, that signal is a
scafed version of the nlosest vector in = to the origin (Fig. 4), and
its near-far resistance [cf. (3.22)] is the norm squared of that vector.
But, as (3.7) indicates, the square of the distance from Z to the origin
is precisely the near-far resistance of the optimum detector.
Equation (3.7) leads to a nice intuitive interpretation of near-far
resistance. Rewrite this equation, using the definition of S(¢, -), as

Nkj = inf
I yitheER
Gtk D)

2
Se(t ~iT = 1e) + Z Y05t —=IT -'7'/')l
Uk, By

(3.20)
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Fig. 4. Interpretation of near-far resistance. Vector in boldface corresponds
to decorrelating filter.

Letting {y;(/)} vary over the admissible set, the second term above
generates all points of a linear subspace which includes the origin,
therefore the infimum in (3.26) is the distance of §¢ (¢t —iT — 7¢) to
this space, i.e.,

e = d* et =iT = 7¢), span {3;(¢ =IT —17p), (J, D) # (k, D)) .

' (3.27)

where d(a, b) denotes the Euclidean distance between the £, ele-
ments a and b. In the synchronous case because the time-support is
disjoint, the infimum in (3.26) is achieved when y;(/) = 0,/ #1i,
and (-3.27) reduces to

T = d*(Sk(t), span {§,(1), J # 4}, (3.28)

i.e., the kth user near-far resistance in a synchronous channel is the
square of the distance of the kth user signal to the space spanned
by the signals of the interfering users. Viewing the asynchronous
problem in terms of the equivalent synchronous system with NxK
users and period NT, the near-far resistance of asynchronous com-
munijcation. allows for the same interpretation. Note, however, that
the shifted versions sx(t —IT —7x), ! i of the kth user signal affect
the near-far resistance of the ith symbol of user k.

The following section characterizes the linear detector that achicves
the optimum near-far resistance anticipated by Proposition 1.

IV. Txe DecorrRELATING DETECTOR

We first assume N to be finite, as in the case in all communica-
tion environments, and characterize the linear filter vhich achieves
the near-far resistance of optimum multiuser detection. This filter is
nonstationary for finjts . The limit as N — co is then considered,
yielding a stationary noncausal limiting filter, and hence, after ap-
propriate truncation of the noncausal part, an approximation of the
near-far optimal Jinear filter which can be implemented easily

A. The Finite Sequence Length Case

Definition: A decorrelating detector d%*/ for the ith bit of the kth
user is a linear detector for which

Rdk i =ykd 4.1

or equivalently, from (2.21), (S(¢, v), §(¢, d%%)) = v (i), for all v
inL.

Existence: By the LIA, statement (4.2) below holds for all k, 7.
Hence, the following equivalences show the existence of the decor-
relating detectors for each bit of each user.

Vv € L with ve(i) #0: |S¢t, v)|| #0 (4.2)
Vv €L with ve(i) #0: vT®v #0 4.3)
& Av eL withve()) #0s.t. Rv =0 (4.4)

< the (k, )™ column? of @ is

2We refer to the (k, i)th row (or column) of a matrix of the dimension of ®
when we want to name the kth row (or columa) within the ith block in vertical
(horizontal) direction. This notation was adopted since @ is block-Toeplitz.

ottt

e bt
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x  linearly independent of the others “.5)

& 3d s.t. ®d =u®, (4.6)

Properties:

1) The decorrelating detector for each bit of each user is invariant
with respect to received energies and does not require knowledge
thereof.

Proof: Since the elements of the matrix ® are normalized
crosscorrelation coefficients, the defining equation (4.1) is energy
independent.

ii) The decorrelating detector eliminates the multiuser interference
present in the respective matched filter output. (Hence its name).

Proof: From (2.20) the decision made on the ith bit of the kth
user at the output of the decorrelating fiter d is,

j bi(i) = sgn @™ ®RWb +d7n)
= sgn (/W ()b (i) +d7n). @.7

Interestingly, this natural strategy, though not necessarily optimal for
specific user-energies, is optimal with respect to the worst possible
distribution of energies.

iii) The kth-user bit-error-rate of the decorrelating detector 1s
mdepe}&dem of the energies of the interfering users w;(i), y 5k,

Proof: lr tollows from (4 7) that the decision statistic that 1s

compared to a zero threshold is independent of the energies of the
interfering users.

iv) The eﬁicxency of the decorrelating Cetector is independent of
the energies and is given by

min L 8¢, W), 3¢, d))
wS8 V) IS D

1 weDbell) @9

; ng" = max2 0, (4'8)

= max?

,,‘(,,“, Vwe(d)  \/dk(i)
-1 (4.10)
T de())’ )

which by i) is energy-independent,

v) The decorrelating detector is the worst case optumal linear de-
tector, and achieves the near-far resistance of optimum multiuser
detection.

Proof: The proof of Proposition 1 is constructive, hence the

’ first part of v) was obtained as a byproduct in Appendix 1. Here is

a shorter proof, using the following fact. Any single linear strategy

which is not decorrelating has a near-far resistance of zero. This ic

shown as follows. The near-far resistance of a linear filter is (cf.
(3.18)):

.
T =maxt d0, inf @.11)
} noma VYT ®y

Unless Ry =u*'! (note invariance of 7 to scaling of v) the value of
the inf-term is —co. Hence any linear filter which is not decorrelating
has a near-far resistance 7 = 0. This fact together with the nonzero
asymptotic efficiency (4.10) of the decorrelating detector establish
optimality of the decorrelating detector within the class of linear
fillers. Therefore the second part of v) results from Proposition 1.

g Note that since the asymptotic efficiency of the decorrelating de-
tector is independent of energies (Property iv) it equals the near-far
resistance. This gives us an explicit solution for the Hilbert space op-
timization problem we obtained for the near-far resistance of optimal
multiuser detection in (3.7), namely,

— 1
Tl =y = 77

% ’ F T de()

Ca)
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Equivalent communication system.

Fig. 5.

and outlines an alternative proof for Proposition [: we could have
explicitly solved the above optimization problem by proceeding along
the same lines as in Appendix 1, postulated the decorrelating detector
by reasoning as in Fact under v), and shown that the asymptotic
efficiency of the decorrelating detector and the near-far resistance of
optimal multiuser detection are equal (see [7]). However, the game
theoretic proof provides more insight into the nature of the solution.

Property iii) is of special importance. By this property the decor-
relating detector does not become multiple-access limited, no matter
how strong the multiple-access interference is. Also the decorrelating
detector demodulates the data perfectly in the absence of noise, as
can be seen from (4.7).

Characterization: We would now like to find an explicit expres-
sion for the decorrelating detector which we have up to now defined
implicitly. It follows immediately from (4.1) and the uniqueness of
the inverse of an invertible matrix that the decorrelating detector for
the ith bit of user £ is the (£, i)th row of the inverse of ®.

From the above and (4.10) the asymptotic efficiency of the decor-
relating detector for the ith bit of user & is given by the (k, 1)th
diagonal element of the inverse of ®:

1

-l *
(R(k kD

i = (4.13)
For the values of N encountered in practical applications, inverting a
NK«NK matrix is not possible. This issue is addressed in Section
IV-B where we represent the decorrelating detector as a K-input K-
output time-varying linear filter, and then show that in the limit as
N tends to infinity the filter becomes time-invariant.

B. The Limiting Case N —

Proposition 2: As the length of the transmitted sequence in-
creases (N — oo) the decorrelating detector approaches the K-input
K-output linear time-invariant filter with transfer function

G(z) = [RT(Dz +R(0) +R(Hz~'1™". (4.19)

» ®
Proof: From (2.14) and (2.13) the matched filter outpuis for
P={-M, - M} are
Yy =RT(HW({ + 16( + 1) +ROW DS )
+R(DW(UI - 1% = 1) +n()

whete b(~M ~ 1) =b(M + 1) = 0. Taking z-transforms and letting

(4.15)

N go to infinity we have

Y (2) =S(2)[WBY(z) + N(z)

where [WB)(z) is the z-transform of the sequence wb =
{Ly/ w11 (i), -+, /Wi (Dbx (D]}, the matrix S(2) is

$(z) =RT(1)z +R(0) +R(1)z""

and Y(2), B(z) and N(2) are, respectively, the vector-valued z-
transforms of the matched filter output sequence, the transmitted
sequence, and the noise sequence at the output of the matched fil-
ters. §(z) can be interpreted as the equivalent transfer function of
the multiuser communication system between transmitter and deci-
sion algorithm, as illustrated in Fig. 5. In this setting the optimal
receiver problem is to find the transfer function matrix G(2) of a
K-input K-output linear time-invariant filter, at the output of which

(4.16)

(4.17)

e s,

cn we——
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Interpretation of the decortelating detector.

Fig. 6.

a sign-decision yields estimates of the transmitted sequence which
are optimal in a certain sense. In our case the optimality criterion is
the near-far resistance, and we have demonstrated that the optimal
filter is the decorrelating filter, which is the filter that eliminates the
multiuser interference, i.e., is the K-input K-output time invariant
linear filter which recovers the transmitted data in the absence of
noise. Its transfer function is therefore the inverse of the equivalent
transfer function §(z):

G@@) =@ (4.18)

The effect of the inverse filter [S(z)]™" can be interpreted as illus-
teated in Fig. 6. The decorrelating filter can be viewed as the cascade
of a finite impulse response filter with transfer function adjoint S(z),
which decorrelates the users, but introduces intersymbol interference
among the previously noninterfering symbols of the same user, and
of a second filter, consisting of a bank of X identical filters with
transfer function [det.S${z)] ™', which removes this intersymbol nter-
ference. Whereas the region of convergance of the z-transform can
always be chosen so as to make §(z) invertible, attention has to be
paid to the issue of stability.

Proposition 3: There is a stable, noncausal realization of the
decorrelating detector, if and only if the signal cross-correlations
are such that

det S(e’*) = det[RT (1)e/* +R(0) +R(1)e™/¥] #0, V w € [0, 2x].

(4.19)

°

Proof: As long as det§(z) has no zeros on the unit circle, a

nonempty convergence region of S ~!(z) can be chosen which in-

cludes the unit circle. Thus, stability can be achieved. But, since
R(0) is symmetric,

=detST(2)

det S(z) =detS(z™".

Hence, the stable version of the decorrelating detector will be non-
causal. (As a side remark, the matrix $(e/) is nonnegative define
for all w, cf. [15]).

Condition (4.19) is equivalent to the limit of the LIA as N ~ oo.
Both are necessary and sufficient conditions for system invertibility.
The LIA requires that the output of a system (the system between
the user bit-streams and the matched filter outputs) not be identically
zero if the input is nonzero. Hence different inputs generate differ-
ent outputs, i.e., the system is invertible. For a linear system the
requirement that nonzero input produce nonzero output is equivalent
to requiring that the transfer matrix be nonsingular on the unt circle.
Assume the transfer matrix is singular at the angular frequency wo.
Necessity follows since otherwise the input sequence consisting of
a complex exponential at wy times a vector in the nullspace of the
transfer matrix evaluated at wy yields zero output; since the trans-
fer function on the unit circle gives the magnitude and phase of the
system response to complex exponentials. On the other hand, suf-
ficiency can be established by using Parseval's relation extended to
multivariable systems:

2r
S = [ I7E o

A2 =—0S
2z

=5 ), IHEXE) do.
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Hence, for a zero output sequence y,, the vector H (e/*)X (e/*) has

to vanish for all w, which implies that H (e /Y is singular whenever

X (e%*) is nonzero. This establishes the claimed equwalence
Proposition 4: Condition (4.19) of Proposition 3 is equivalent to

min (x*R(O} — \/(x*R.x)? + (x*Rx)*) >0 (420)

]

“red
where R, =R7(1)+R(1) andR . =j(RT (1)~R(1)). The * denotes
the complex conjugate. [

Note that both R ;. and R . are Hermitian. The proof of Proposi-
tion 4 is given in [15], together with the following two results,

— A necessary condition for (4.20) is that the matrices R(0) +
R(1) +RT(1) and R(0) —R(1) —R7(1) be nonsingular.

~— A sufficient condition for (4.20) is that

N RO) > max (N (R 1), Nyin R +)} + Ny R ).

The following results quantify the asymptotic efficiency achieved by
the limiting decorrelating detector.

Proposition 5: Let
Z D(m)z~™.

B@ = (4.21)
me=00

Then the asymptotic efficiency of the limiting decorrelating detector
for the kth user is given by

g_ 1 4.22
™ = D) “
27 -
=[2L RT (1) +R(0)+R<1)e"“’lk7<'d“’} '
*Jo
(4.23)
[ )

Proof: From Proposition 2 the z-transform of the decision
statistic at the output of the limiting decorrelating detector is given

by
G(2)Y (2) = WB(z) + 5(2) ™' N(2) = [WB)(2) + N'(2)

where N'(z) is the z-transform of the (stationary) filtered Gaussian
background noise vector se%_ ence. The z-transform of its covariance
matrix sequence Eln’(-m’T(- + )] is equal to 02[S(2)]™", hence
with (4.21) nk is a zero-mean Gaussian random variable with vari-
ance 02Dy (0). Therefore, the probability of error for the kth user
equals

VWi

—_— . (4.24)
0/ Dix(0)

From here, using the definition of asymptotic efficiency, the first

equality follows. For the second, note that applying the inverse z-
transform and definition (4.21), we obtain

P, =P(n,’( > JWe =Q<

1 27
= Juyy~1
Du® =7 | 5! da
and the result follows using (4.17). o
Proposition 6: The asymptotic efficiency of the limiting decorre-
lating detector for the kth user is strictly positive, and lower bounded
by

Cd |
nd > L max |[RT(D)e” +R(0) +R(1)e ™) l] >0.

€[0,27)
(4.25)
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Proof: From (4.22), (4.23)
Dy (0) £ max |RT (e’ +R(©0) +R(De~"15!|. (4.26)
w ) &X

Hence,

d . 1 T " —Joym =1
T *= By 2 ngﬂlm (De’ +R(0) +R (e ]u']

min det{R7 (1)e’® +R(0) +R(1e™"]|
> [
= max [adjy RT(1)e’* +R(0) +R(De™)|’

4.27)

s which is positive by Proposition 3.
Proposition 7: In the two-user case let R 2(0) = py3 and R\3(1) =
p21. Then the asymptotic efficiency of the decorrelating detector for
infinite sequence length is given by

i =n = /(1 ~ph = 0}))? —40h,e},
i = I = (o2 + pu Il = (2 —p)?].  (4.28)

[ ]

Proof: This formula can be obtained by particularizing Propo-

sition 5 or by minimizing the asymptotic efficiency of optimal mul-

tiuser detection in the two-user case with respect to energies. Alter-

natively, we will prove (4.28) by taking the limit as N — oo of the

asymptotic efficiency of the decorrelating filter for the central bits in

§ a length N sequence. We will then have proved that in the two-

user case the limit of the asymptotic efficiency of the finite-length

decorrelating detector as N — oo is indeed the asymptotic efficiency
of the limiting decorrelating detector.

Recall that the asymptotic efficiency of the decorrelating detector
is given by the reciprocal of the corresponding diagonal element of
®~'. We need to find explicit expressions for the central diagonal

g elements of the inverse of the matrix ® as a function of V. We have

1 pp 0 O

®R=10 o 1 o |, (4.29)

Denote by A, the dererminant of the above n+1t matrix. It is easy
to see from the st * .o.c oF R that A, satisfies the recursion

o} Apwz, neven
g Ap=0p- -4, (4.30)
p3 Ap—2, nodd.
Hence, we can write
AT 1 —P%z _p§| Azpz
Agpey 1 -’P§| Arp—g
%If we consider the sequence of 4n»4n matrices for simplicity, the

central diagonal element of the inverse of R is Asn/(Aza—1 D2q).
Hence, after introducing the state vector

A

=] 1, 432)
A2:1---1

%we see that finding Azq, Ag,~; requires finding the trajectory of the
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Fig. 7. Asymptotic sfficiencies in the two-user case for infinite transmitted
sequence length, when the user energies are constant over time (here we
chose [p1z2l, to21] = 0.3, 0.5 which yields 5 nin = 0.68, ¢ =0.59)

unforced linear dynamic system

1-pk -0 1 = o
Xp = Xpty X1 = ’
1-04, -1 [1
. 12 21 _ (4.33)
1 -p 0

The eigenvalues of this system are found to be

i.e.,

1 -}y —oh /(1 =}, - 0})2 = 40},02,
>\l,2 = > .

We see 0 < \; < Az < L. After finding the corresponding eigenvec-
tors it follows that:

MAsh Ntdh][M 0
Xy =
! R ERY

1 “0u+eip] 1 1
-1 AN+ ilo A=
M+oh N+oh ] B 1
I i VRV

(4.34)

Hence the central diagonal element of the inverse of ® is

A.an = [l leZn
A2r|—l AZn [0 lkn“ Okn
_ /A" +03)) = Qo +03)
[ /A" = I /M) O+ 631) = (M2 +03))

(M =M. (4.35)
So finally
d_ p Ban - - bl 232 2 2
7% = lim "_"‘—'— =N-M= \/(1 = oty = P ) = 4pi203; -

n—00 Agp—t B2n
¢

Fig. 7 shows the asymptotic efficiency of the decorrelating detector
for infinite transmitted sequence length in the two user case. Note its
invariance with respect to energies. The discrepancy between 7% and
N min» defined in (3.4), is due to the fact that 5 s is higher than the
near-far resistance of optimum multiuser detection, since for 7 mn
the energies are constrained to be constant over time.
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Fig. 8. Signals and crosscorrelations of example (4.42).

The fact that the stable version of the decorrelating filter turns out
to be noncausal is not surprising. Due to the lack of synchronism
among the users any decision based on less than the entire received
waveform is suboptimal. In practice, since the filter is stable, the
more remote symbols will count less heavily, and truncation of the
noncausai part will be performed after a switable delay without affect-
iny, performance appreciably. For dlustration consider the two-user
case where we let R12(0) = pi; and Ry2(1) = p21. Then

1 Pz + oz~
S§@@) =
o2 +pnz \

and the transfer function of the decorrelating detector as given by
4.27) is
1

§7N2) = —5— =
1 =piy ~ 031 —Pr20012 = Pr2P212

*

i =(pr2 + o127
. . (4.36)
—(p12 + p212) 1

We are interested in the impulse response f(n) of the IR part of the
above filter. Taking the inverse z-transform it is found to be

1 glnl
l —2 _ 2 _ — - = —
Pi2 — P21 — Pn2PuZ — pi2Pu 7

f(ﬂ)=Z"[

(4.37)

where £ = (1 ~ p%, — 03, — 1)/(2p12011) and n is the asymptotic
efficiency which is given by Proposition 7. It can be checked that
|&] < 1, with equality if |pi2]| + |e21] = 1, which can be shown to
coincide with the condition imposed by Proposition 3 for the two-
user case. In the latter case the asymptotic efficiency is zero, which
follows from Proposition 7. Otherwise, since £] < 1 the limiting fil-
ter is stable, with symmetric coefficients which decay with rate .
In practical applications the filter will be approximated up to any
desired precision by truncation of the noncausal part to a finite num-
ber of filter coefficients. For illustration the decay rate £ of the filter
coefficients and the achievable asymptotic efficiency » are plotted in
Fig. 9 as functions of py2 and py;.

Poor cross-correlaton properues among the signature waveforms
vould imply that the limiting filter G(2) does not exist, although the
decurrelating detector exists for finite-length transmutted sequences.
We give an example to illustrate this fact. For K = 2 it is straight-
forward to show that the condition of Proposition 3 is satisfied for
all signal constellations for which |R,2(0)] = [R,2(1)} # 1. This is
the vase unless the normalized waveforms coincide modulo circular
shifts and sign changes.

Consider the tnvial signal case where both users are assigned the
same rectangular waveform, as shown in Fig. 8. Abbreviate R3(0),
which 15 the crosscorrelation between bits 1n the same signaling in-
terval, by r = 7,7 € [0, 1), then in this case R;(1), whuch 15 the
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crosscorrelation between bits in adjacent intervals, is 1 ~ r. Then,

( 1 F+(l —r)z“)
S = (4.38)
r+(l-r)z 1

becomes singular for z = 1, hence there is no stable limiting inverse
filter. And if it existed its asymptotic efficiency, as given by (4.28),
would be zero. This is not surprising, for an infinite sequence of
transmitted bits where both users use the same waveform. However,
for finite length sequences advantage can be taken of the marginal
effects of having bits which are not affected by either past or future
bits. For finite NV the decorrelating detector exists unless r =0, i.e.,
when the transmissions are not synchronous. This is in accord with
the multiarrival condition given in Appendix 2, and with the results
obtained in the synchronous case [7].

V. Error ProbasiLiTies: NUMERICAL EXAMPLES

In the sequel, we compare the performances of the conventional
and of the decorrelating detector. Without loss of generality we con-
sider the error probability of user 1 in a channel shared by several
active users. The conventional detector decides for the sign of the
kth component of the matched filter output vector, given by (2.14).
Therefore its average error probability over the bit sequences of the
interfering users equals

1
2K -1) Z

5501 5)(—1), j1

X
VT =3 Ruy(O)b;(0) +R1 (Db (-] 77
J=2

Q ,

]

5.1

whereas its worst case error probability over the interfering bit se-
quences equals

K
V=) TRyO) -+ Ry (N7
jm2

Q .62

ag

The probability of error of the decorrelating detector equals, from
(4.29),

0 il
o+/D1(0)
with (the equivalence with (4.23) 1s easy to show, cf. [15])

Dy(0) = % / R(1) e +R(0) +R(De™17" dw. (5.3)
0

The delays enter the above formulas implicitly via the crosscorrela-
uon matrices, which are functions thereof and of the chosen signa-
ture sequences. In the following examples, we have chosen a set of
spread-spectrum m-sequences of length 31.

In Fig. 10 we use, for comparison purposes to previous works
([14], [1]), the set of 3 sequences reported in {12, Table V] to be
opumal with respect to a signal-to-multiple-access interference pa-
rameter when the conventional detector is used. We consider a base-
band environment with K - 1 active equal energy interferers, whose
delay relative to each other is fixed. Fig. 10, for K = 3, shows the
1st user error probabulity of the conventional receiver versus SNR,,
the signal-to-background-noise ratio of user 1, for different values
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7 8 9 1
0 [} o 0
g4 .24
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(2) Asymptotic efficiency of the decorrelating detector for two users

as a function of the partial crosscorrelations of their signature waveforms.
(b) Decay rates of the coefficients of the IIR part of the decorrelating
detector for two users, symmetric in o2 and pyy.
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Fig 10. Error probability of user 1 with 2 active equal energy interferers,
each of energy w;, averaged over the interfering bit sequences and over
the delay of user 1, for the decorrelating and conventional receiver versus
the SNR of user 1, for m-sequences of length 31 and different interference
levels.

of the energy ratio SNR;/SNR, averaged over the bit sequences of
the two interferers and over the delay of user 1. Also shown are the
1st user error probability of the decorrelating detector and the error
-probability of the single user channel. From Fig. 10 we see the strong
dependence of the performance of the conventional receiver on the
relative energies of the active users. While the error probability of the
decorrelating detector is invariant to the energy of interfering users,
the performance of the conventional receiver deteriorates rapidly for
increasing interference, till for an energy ratio above 5 dB the con-
ventional receiver becomes practically multiple-access limited. (For a
sufficiently high level of nonorthogonal interference the error proba-
bility of the conventional receiver can be seen to become irreducible.
E.g., in the two-user synchronous case, for /w2//W; =(1+4)/p
where p is the normalized crosscorrelation coefficient between the
two signature signals and A > 0, the error probabilitv of the con-
ventional receiver tends to 1/4 if A = 0 and 1o /2 if A >0 for
increasing SNR of user 1). Note that if the energies of all the users
are equal the decorrelating detector is around two orders of mag-
nitude better than the conventional receiver at 10 dB. Only if the
multiple-access interference level plays a subordinate role compared
to the background noise does the conventional detector outperform
the decorrelating detector, which pays a penalty for combatting the
interference instead of ignoring it. Simular results were obtained re-
gardless of the actual value of the relative delay between the two
interfering users.

Fig. 11 shows the same setting as above, in the case K = 6. We
have used the set of autocptimal m-sequences of length 31 found in
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Fig. 12. Worst case probability of user 1 w.r.t. the bit sequences of the
interfering users, with ¢ equal energy interferers.

[13, Fig. A.1] to be optimal with respect to certain peak and mean-
square correlation parameters which play an important role in the
error probability analysis of the conventional detector. Comparing
Fig. 11 to Fig. 10 we see the same qualitative error probability
relation between the two detectors, and again the strong near-~far
limitation of the conveational receiver. Since there are more active
interferers the performance advantage of the decorrelating detector
in a near-far environment is even more pronounced: if the energies
of all the users are equal the decorrelating detector is almost three
orders of magnitude better than the conventional receiver at 10 dB.

Finally, Fig. 12 shows the worst case probability of the conven-
tional detector over the sequences of interfering users, as given by
(5.2), for K = 10, The signature sequence set used. for X = 6
has been expanded— without trying to optimize, as before, with re-
spect to the performance of the conventional detector. The shown
error probabilities are typical, varying very little if different sets of
delays are used because of the good crosscorrelation properties of
m-sequences.

Overall the generated error probability curves show the pro-
nounced superiority of the decorrelating receiver in a near~far envi-
ronment, and whenever sufficiently many users are active even if their
energies are well below the energy of the desired user, Note, finally,
that the selected signature sequences were optimal with respect to the
performance of the conventional receiver. It would be interesting to
investigate the possible performance gain of using the decorrelating
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detector in conjunction with a set of signature sequences optimized
for its use.

V1. CoNcLUsIONS

In this paper, we have obtained a linear multiuser detector,
the decorrelating detector, for demodulation of asynchronous code-
division multiplexed signals in white Gaussian channels. The bit-
error-rate of this detector is independent of the energy of the inter-
fering users and exhibits the same degree of near-far resistance as
the optimum multiuser detector obtained in [1]. Since the decorrelat-
ing detector does not require knowledge of the received energies and
its complexity is only linear in the number of users, it emerges as
the solution of choice in near-far environments with a large number
of users.

In applications where each receiver is interested in demodulating
the inforination transmitted by only one user, it is easy to decentralize
tue K-user decorrelating receiver since it can be implemented as X
separate (continuous-time) single-input (discrete-time) single-output
filters. Each of those filters can be viewed as a modification of the
conventional single-user matched filter where instead of correlating
the channel output with the signature waveform of the user of interest,
we use its projection on the subspace orthogonal to the space spanned
by the interfering signals.

Note, finally, that if the filter is actually an approximation to the
decorrelating receiver, due to, for example, finite accuracy in the
computation of the crosscorrelations or truncation of the impulse
response (Section [V-B), it will no longer be orthogonal to the sub-
space of the interfering signals and therefore it will not be near-far
resistant in the worst case sense adopted in this paper. However,
the effect on the bit-error-rate will be arbitrarily small with a good
enough approximation to the decorrelating receiver, and therefore the
bit-error-rate will be very insensitive to the energy level of the inter-
ferers. Hence, the resistance to the near-far problem can be preserved
within any desired energy range.

AppPENDIX |

Sappre-Point PropERTY IN (3.19)

Though the penalty function of (3.18) looks similar to the signal-
to-noise ratio functional encountered in the robust matched filtering
problem (5, |{h, s)I?/{h, 3_h), the problem is different here be-
cause the numerator can be negative. Thus we have to establish the
result *“from scratch.” In order to show that M(v, y) has a saddle
point, i.e,, satisfies (3.19), we show that it satisfies the requirements
ofethe following theorem.

Theorem [4, Tinn. 2.1]: Suppose Q is a convex set and M(v, -)
is convex on Q for every v € &. Then if (v.,y,) is a regular pair
for (H, Q, M), the following are equivalent:

a) y. € argmin sup M(v,»),

y€Qvey

b) (vi,y,) is a saddle point solution for (H, @, M).

This theorem establishes that if we exhibit a regular pair whose sec-
ond argument satisfies a), the game (H, Q, M) has a saddle point,
which means that the sequence of max and min in (3.18) can be in-
terchanged. In the following, we find a suitable regular pair, thereby
proving (3.19).

Clearly the convexity conditions are satisfied (the set of detectors is
not required to be topologized). We need to find a candidate regular
pair. Note that the value of inf term in (3.18) is — oo (which gives a
near-far resistance of zero) unless v is picked such that ®v =u®! (5
is inve. 1ant with respect to scaling of vg. u*' is the (k, i)th unit vector
in the Hilbert space L, defined as u /"(1) = 8¢;0. This gives us a
candidate for an optimal detector v, : d, with ®Rd =u*’. Existence
of such a vector is shown in (4.6) to follow from the LIA of (2.3).

Swe,y,) €H x Q is a regular pair for (H, Q, M) if, for every y € Q
suchthaty = (1 —aly, +av € Q for ¢ € [0, 1], we have

sup M(v,y,) —Mlve,y,) = ola).
YEH
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glf this detector is indeed optimal, which follows if the candidate pair
is regular and satisfies a), and coincides with v *).

Next we find a p, which meets the requirement of point a) of the
theorem. Using the Cauchy-Schwarz inequality, we find that

T
y Qv
Sup M@, p) = sup —= = /YT Ry (A.l)
veg rwsg10 Wi Ry
v Ruy

(\)v}here the inner product is maximized forv =ky + fx € L: ®x =

We now need to solve the Hilbert space optimization problem
inf y7 Ry (A2)
subject to yx (i) = 1.

Using (2.21) and the definition of d we can rewrite the mummization
problem under consideration as

inf [pliz
subject to {d,y)r = 1.

(A3)

I-llz is 2 norm since ® is positive definite, We have obtained a
mupimum-norm optimizauon problem 1n Hilbert space. To prove ex-
istence of a solution.we need to show that constraint set to be closed,
which holds since the Hilbert space 1s finite dimenstonai, (Even for
N — o0, when we have an_ infimte dimensional optimization prob-
lem, we could use the fact that the codimension 1s fimte. The prob-
lem there 15 that the signals are no longer square integrable.) The
constraint, y (i) = 1, 1s equivalent toy =u*' + {x: ,d)z =0}.
@ = [d], the subspace generated by d, 15 a closed subspace of dimen-
ston 1. Hence the constramnt set {x: @,d); =0} = @~ 1s closed.
We now have a miumum-norm optimization problem in Hilbert space
over a closed subspace. Hence, the Projection Theorem, [6], guar-

4 antees existence {so we can replace the inf by a min, as required in

|

a)] and uniqueness of a minimizing equivalence class y*, with

y*efat +ut'}ngett = (@t +ut'ine (A4
where equality holds since A is closed. Hence »*’VY =1 and y* =
kd , which implies

.1

y = md. (A.S)

We now have a candidate regular pair which satisfies a): ., y,) =
, (di(i))~'d). From (A.1) and the definition of regularity we have
to check the dependence on « of

Ao, - 2
¢ ¢ UZ(RVL

= \/d"®d +2a(y ~d) ®d + o2y —~dY R —d)

- [
di(i)

=] sy —dTRY -d) -
= dk(‘.)+a0' T}y d)\/

We have repeatedly used the decorrelating property of d. Since
V1+x <1+ 1/2x, the above quantity lies in the interval {0, (y —

1

FRGR (A.6)

dY Ry -d)\/dc(i)/2a ], hence divided by o goes to O when « 0.
Thus (d, (d«{))~'d) is a regular pair which .atisfies point ) of the

g theorem. Hence it follows from the theorem that the penalty function
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yT®v /WwT Qv has a saddle point, i.e.,
T a
: y' Qv . . y' Rv

su inf = inf f .

..elz yEL WT Ry y‘& y'EL VT Ry (a7
iRyl Yeti)=l yr=l T qysh

o

APPENDIX 2

SurriCIENT CONDITIONS FOR LINEAR INDEPENDENCE

Suppose that, for a fixed signal set,
i} {r1,*-*,7x } are continuous random variables,
ify {r1,*--,7x} are independent random variables,
ifi) (i) # 0. .
Then almost surely there isnov € L,vg (i) # 0 such that S(¢,v) = 0.
Proof: Define the times of effective arrival and departure of the
ith signal of the Ath user [1], as

Ny =7 +iT +sup {r €0, T),/ si(tydt =0} (A.8)
0

and

.
My =7 +iT +inf {TG(O.TI, / st(t)dt=0}» (A9)

respectively.

Since v, (f) # 0 there is a first and a last symbol that differs from
zero. It is readily apparent that in order to have S(¢,v) = 0, the
effective arrival of the first (and the effective departure of the last)
symbol that differs from zero must be a point of effective multiar-
rival (respectively multideparture). Note that this property does not
depend on the particular v chosen, but only on the set of delays.
From (A.8), (A.9), the effective times of arrival and departure in-
herit from the delays the properties of being continuously valued and
mutually independent. Therefore, the result follows, since the set of
delays {r,, ,7x} for which multiarrival points result has measure
Zero. ¢
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Linear Multiuser Detectors for Synchronous
Code-Division Multiple-Access Channels

RUXANDRA LUPAS, STUDENT MEMBER, IEEE, AND SERGIO VERDU, SENIOR MEMBER, IEEE

Abstract —In code-division multiple-access systems, simultaneous mul-
tiuser accessing of a common channel is made possible by assigning a
signature waveform to each user. Knowledge of these waveforms enables
the receiver to demodulate e data streams of each user, upon observation
of the sum of the transmitted signals, perturbed by additive noise. Under
the assumptions of symbol-synchronous transmissions and white Gaussian
noise, we analyze the detection mechanism at the receiver, comparing
different detectors by their bit error rate in the low background noise
region, and by their worst-case behavior in a near-far environment where
the received energies of the users are not necessarily similar. Optimum
multiuser detection achieves important performance gains over conven-
tional single-user detection at the expense of computational complexity
that grows exponentiaily with the number of users, It is shown that in the
synchronous case the performance achieved by linear multiuser detectors
(whose complexity per demodulated bit is only linear in the number of
users) is similar to that of optimum multiuser detection. Attention is
focused on detectors whose linear memoryless trazisformation is 2 general-
ized inverse of the matrix of signature waveform crosscorrelations, and on
the optimum linear detector. It is shown that the generalized inverse
detectors exhibit the same degree of near-far resistance as the optimum
multiuser detector; the optimum linear detector is obtained subsequently,
along with sufficient conditions on the signal energies and crosscorrels-
tions to ensure that its performance is equal to that of the optimum
multiuser detector.

I. INTRODUCTION

ODE-DIVISION multiple-access is a multiplexing

technique where several independent users access si-
multaneously a multipoint-to-point channel by modulating
preassigned signature waveforms. These waveforms are
known to the receiver, which observes the sum of the
modulated signals embedded in additive white Gaussian
noise. If the assigned signals were orthogonai, then a bank
of decoupled single-user detectors (matched filters fol-
lowed by thresholds) would achieve optimum demodula-
tion. In practice, however, orthogonal signal constellations
are more the exception than the rule because of bandwidth
or complexity limitations (the number of potential users
can be very large), lack of synchronism, or other design
constraints. Therefore the question of interest is how to

Manuscript received February 27, 1987; revised October 21, 1987. The
material in this paper was partially presented at the 25th IEEE Confer-
ence on Decision and Control, Athens, Greece, December 1986, Thus
work was supported in part by the U.S. Army Rescarch Office under
Contract DAAL03-87-K-0062.

The authors are with the Department of Electrical Engineenng, Prnce-
ton University, Princeton, NJ 08544,

[EEE Log Number 8825697,

demodulate the transmitted messages when the assigned
signals are not orthogonal. In practice, demodulation
strategies have been restricted to single-user detection,
thereby placing the whole burden of complexity on the
cross correlation properties of the signal constellation.
Recently, the optimum multiuser detector for general asyn-
chronous Gaussian channels was derived and analyzed in
[1]. The optimum detector significantly outperforms thre
conventional single-user detector at the expense of a
marked increase in computational complexity—it grows
exponentially with the number of users.

The purpose of this paper is to investigate new low-com-
plexity multiuser detection strategies that approach the
performance of the optimum detector and to gain further
insight into the performance of the optimum multiuser
detector. Qur attention in focused on symbol-synchronous
channels, where the symbol epochs of all users coincide at
the receiver. Although in practice this assumption rules out
the important class of completely asynchronous code-divi-
sion multiple-access systems, it holds in slotted channels,
and its study is a necessary prerequisite for tackling the
general asynchronous channel by allowing us to gain some
appreciation of the main issues in the simplest possible
setting.

The performance measure of interest is the_probability
of error of each user. In multiuser problems it is often
more convenient and intuitively sound to give information
concerning the error probability by means of the efficiency,
or ratio between the effective signal-to-noise ratio (SNR)
and the actual SNR, where the effective SNR is the one
required to achieve the same probability of error in the
absence of interfering users, and the actual SNR 1s the
received energy of the user divided by the power spectral
density level of the background thermal white Gaussian
noise (not including interference from other users). Note
that since the single-user error probability is a one-to-one
function of the SNR, the efficiency gives the same infor-
mation as the error probability. Its limit as the background
Gaussian noise level goes to zero, the asymptotic efficiency,
characterizes the underlying performance loss when the
dominant impairment is the existence of other users rather
than the additive channel noise. Denoting the power spec-
tral density level of the background white noise by o2, the
kth user asymptotic efficiency of a detector whose kth
user error probability and energy are equa to P, and w,

0018-9448 /89 /0100-0123301.00 ©1989 IEEE
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respectively, can be written as [1)!

Jrw
ML =sup{0<r<l; limoPk(o)/Q(-—o—k-)« +oo},
g -

(1.1)

Le., the logarithm of the error probability goes to zero with
the same slope as the single-user bit error rate with energy
Wi In this paper we compare the performance of the
various multiuser detectors by means of the asymptotic
efficiency. In the high® SNR region, the advantage of this
measure over the probability of error is twofold. it quanti-
fies the performance degradation due to the eustence of
other users in a simple, intuitive way, and in contrast to
multiuser error probability for which only (asympuoucally
tight) upper and lower bounds are known [1), exact expres-
sions for the asymptotic efficiency are feasible.

The main shortcoming of currently operational networks
employing code-division multiple-access is the near- far
problem. This refers to the situation wherein the received
powers of the users are dissimilar (e.g., in mobile radio
networks). Since the output of the matched filter of each
user contains a spurious component which 1s linear in the
amplitude of each of the interfering users, the error proba-
bility increases to 1,2 as the multiuser interference grows,
the asymptotic efficiency becomes zero, and the conven-
tional single-user detector is unable to recover reliably the
messages transmitted by the weaker users even if signals
with very low crosscorrelations are assigned to the users.
tHowever, the near-far problem is not an inhercnt charac-
teristic of code-division multiple-access systems. Rather, it
is the inability of the conventional single-user receiver to
exploit the structure of the multiple-access interference
that accounts for the ubiquity of the near-far problem in
practice. We show that the optimum multiuser detector
and other multiuser detectors with much lower computa-
tional complexity are near - far resistant under mild condi-
tions on the signal constellation. By near—far resistance we
mean the asymptotic efficiency minimized over the ener-
gies of all the interfering users. If this minimum is nonzero,
and, as a consequence, the performance level 1s guaranteed
no matter how powerful the multiuser interference, then
we say that the detector is near—far resistant.

The organization of the rest of the paper is as follows.
The asymptotic efficiency and the near-far resistance of
both the conventional and the optimum detectors are given
in Section II. In Section I, we introduce the decorrelating
multiuser detector. This detector linearly transforms each
vector of matched filter outputs with a generalized inverse
of the signal crosscorrelation matrix. It is shown that,
somewhat unexpectedly, the near-far resistance of the
optimum multiuser detector coincides with that of the
decorrelating detector whose complexity per demodulated

'0(x) = 2 V2m)e™ 2 d.
In the numencal results of {1} and {2}, the efficiency 1s indisunguish-
able from the asymptotic efficiency for SNR's higher than 7 dB.
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bit is only linear in the number of users. Finally, Section
IV investigates the performance of the optimum linear
transformation and gives sufficient conditions on the sig-
nal energies and crosscorrelations to ensure that the
asymptotic efficiency of the optimum linear transforma-
tion is equal to that of the optimum multiuser detector.

II. SINGLE-USER DETECTION AND OPTIMUM
MULTIUSER DETECTION

Suppose that the kth user is assigned a finite energy
signature waveform, {s,(¢), t €(0,T]}, and that it trans-
mits a string of bits by modulating that waveform antipo-
dally. If the users maintain symbol synchronization and
share a white Gaussian multiple-access channel, then the
receiver observes

K
r(t)= kZlbk(j)sk(r - jT)+onf1),

te[jT, jT+T] (2.1)

where n(t) is a realization of a unit spectral density white
Gaussian process and {b,(j) € {-1,1}}, is the Ath user
information sequence. Assuming that all possible infurma-
tion sequences are equally likely, it suffices to restrict
attention to a specific symbol interval in (2.1), e.g., j =0.

It is easy to check that the likelihood function depends
on the observations only through the outputs of a bank of
matched filters:

yk=/;rr(t)sk(t)dt, k=1,-.K (22
and therefore y=(y,, -, yx) are sufficient statistics for
demodulating b= (b, -+, bg). We investigate ways of
processing these sufficient statistics, which according to
(2.1) and (2.2) depend on the transmutted bits in the
following way:

. y=Hb+n (2.3)

where H is the nonnegative definite matrix of crosscorrela-
tions between the ¢ ssigned waveforms:

T
H,,=j0s,.(:)s,(f)dt (2.4)
and its diagonal entries are the energies-per-bit, H, = w, >
0, of each user; and a is a zero-mean Gausslan K-vector
with covariance matrix equal to o2H.

Conventional single-user detection is the simplest way to
make decisions based on y,; demodulation is decoupled
and the multiuser interference is ignored, yield ag the
following decisions for the kth user:

~

by =sgn ;.

On the other hand, the optimum multiuser_ detector
selects the most likely hypothesis * = (b, ,b%) given
the observations, which corresponds to selecting the noise
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realization with minimum energy, i.e.,

X 2
b*carg min fr{r(l)—Zbksk(r)] dt
be(~1,1)% -0 kw1
=arg max 2y"b-bTHb. (2.5)
be (~L1)¥

The computational complexities of the single-user detector
and the optinum multiuser detector are radically differcnt.
While the time-complexity per bit (TCB) of the single-user
detector is independent of the number of users, no algo-
rithm that solves (2.5) in polynomial time in K is known.
The reason for this is the nondeterministic polynomial
(NP)-completeness of optimum multiuser detection (Ap-
pendix I).

The performances of the detectors are also quite differ-
ent. It is straightforward to find the kth user probability
of error of the conventional single-user detector:

Pi= Py > 0lb,=-1]

= X Plyp>0 pP[blb,=-1]
be (-1.1)¥
by =~1

Wy = 2 b;Hy

ik

o |

In the low background noise region, the foregoing sum-
mation is dominated by the term corresponding to the
least favorable bits of the interfering users, ie, b,=
sgn(H,) Thus the asymptotic efficiency of the conven-
tional detector is equal to

=J1=K

L 9

be(-1,1)¥
bk-_l

(2.6)

n,
7% =sup{0$r51; ﬁinoP;/Q(L:i) < +oo}
| Hil

£ B}

ink Wk
: w
e

ivk

= max? {0,1—

2.7

where R is the matrix of normalized (unit-energy) cross
correla.ions, i.e.,

H=W'\RW'\/? (2.8)

where W = diag {wy,- - -, w }. It follows from (2.7) that the
conventional kth user detector is near—far resistant (i.e.,
its asymptotic efficiency is bounded away from zero as a
function of the interfering users’ cnergies) only 1f R, =0
for all i # k, i.e., only if the kth user’s signal is orthogonal
to the subspace spanned by the other signals. Otherwise,

(2.9)

7= inf 75=0.
w20
ik
The kth user error probability of the optimum multiuser
receiver is asymplotically (as ¢ — 0) equivalent to that of a
binary test between the two closest hypotheses that difter

in the kth bit (see [1]). The square of the Euclidean
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distance between the signals corresponding to these two
hypotheses is equal to

K K
min min | 3 bys;(1)~ 2. dis; (1)
be(-L1)* de(-11}%|;u} iml
dewby

2

=2 min

e {~1,0,1)X
‘l-l
Hence the asymptotic efficiency of the optimum mul-
tiuser detector is equal to

1

X e

"He. (2.10)

min € He.
W «e{~1.0,1}¥
(k -]

L (2.11)

This is the highest efficiency attainable by any detector
becaus as o — 0 the optimum multiuser detector achieves
minimum probability of error for each user. In the two-user
case, denoting p = R,,, (2.11) reduces to

W ¥/‘—";
=min{ 1,14+ — =2|p|=1}, 2.12
™ mm{ W, IPIM} ( )

and-similarly for user 2. Unfortunately, no explicit expres-
sions are known for (2.11) in general. In fact, the combina-
torial optimization problem in (2.11) is-also NP-complete
(Appendix I). '

Nevertheless, it is indeed possible to obtain a closed-form
expression for the near-far resistance of the optimum
multiuser detector, because the minimization of the asymp-
totic efficiencies with respect to the energies of the interfer-
ing user waveforms reduces the combinatorial optimization
problem in {2.11) to a continuous optimization problem
whose solution is given by the following result.

Proposition 1: Denote by R* the Moore-Penrose gener-
alized inverse® of the normalized crosscorrelation matrix
R. If the signal of the kth user is linearly independent, i.e.,
it does not belong to the subspace spanned by the other
signals, then

M= inf 7, =
w20
iRk

-Ef; (2.13)

Otherwise, 7, =0.

Proof: Using (2.11) for the maximum asymptotic effi-
ciency of the kth user, we obtain

1
fp,=min min —e He
w20 ¢e(~1,0,1)¥ W,
iwk G =l
. . 1.

=min min —dWVIRW/%

w20 ¢e(-1,0,1)X W,

ik =}
= min x"Rx

xe RX

Xk‘l

i 7, T
zénllzx"l" (14227, +2 Rz)

(2.14)

’A generalized inverse A of a matrix B is any matnx that satisfies 1.
ABA= A and 2. BAB = B, The Moorc-Penrose gencralized inverse is the
unique generalized inverse that satisfics 3. AB and BA are Hermitian.
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where R, is obtained from R by deleting the kth row and
column and a, is the kth column of R with the kth entry
removed. Henceforth, we denote such a partitioning of a
symmetric matrix with respect to the kth row and column
by R=[R,,a,,1], where the rightmost element in the
square brackets is the k th diagonal entry. The minimum in
the right side of (2.14) is achieved by any element z* such
that

Rz*=-a,. (2.15)

Because of the Fredholm theorem [11, p. 115}, the solv-
ability of (2.15) is equivalent to a, being orthogonal to the
null space of R,. However, for all z € R¥~! the parabola
q(v) = v*+2vz"a, + "R,z has at most one zero because
it is equal to the quadratic form of the nonnegative defi-
nite matrix R with a vector whose kth coordinate is v and
whose other components are equal to z. Therefore, the
discriminant of the parabola satisfies (z7a,)* = z"R,z £ 0;
in particular, if z belongs to the null space of R, then
z7a, =0. So a, is indeed orthogonal to the null space of
R,. Substituting (2.15) into (2.14) we obtain

e=1-2*"Rz*
=1-z*"R . R{R 2"

_t e TPt
=1 akRkak.

(2.16)

Notice that the kth user is linearly dependent if and
only if there exists a linear combination of the columns of
R that includes the %th column and is equal to the zero
vector. Therefore, if a user is linearly dependent then we
can find x such that Rx =0 and x, =1, in which case the
penultimate equation in (2.14) indicates that %, =0. To
obtain the near-far resistance of a linearly independent
user, we awploy the following property, which is invoked
again later on.

Lemma 1: If the kth user is linearly independent, then
every generalized inverse R’ of R satisfies: (R'R),;= 8,
(RR"), =8, and R}, = Rj;. (Analogous formulas hold
for the unnormalized crosscorrelation matrix H.)

Proof of Lemma I: Let §= R'R — 1. By the definition
of generalized inverse, it follows that RS =0, ie., every
column of S is in the null space of R. However, if the kth
user is linearly independent, it is necessary that the kth
element of each such column be zero. Hence (R'R ~I),,
=0 forall j=1,--- K.

Similarly, with S=RR'-TI and SR=0, we obtain
(RR"),, = 8. Equivalently, RR'u,=u,, using the kth
unit vector u,. Hence, for any generalized inverses
R!, RL, R(R{— R%)u, = 0. However, since the kth user 1s
linearly independent, it is necessary that the kth element
of each vector in the null space of R be zero. Hence
(R{~ R} = 0.

Now-we continue with the proof of Proposition 1. Parti-
tioning R* with respect to the kth row and. column, we
have, say, R* =[C, ¢, v]). Now, computing the submatrices
of the partitioned matrix R*R and using Lemma 1, it
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follows that

Ric+va,=0 (2.17)

and

cla, +y=1. (2.18)

Notice that y # 0, for otherwise ¢ would belong to the null
space of R, and would not be orthogonal to a,, which, as
we saw, is not possible. Finally, substituting (2.17) into
(2.16) we obtain

1
Me=1- ;-z-cTRkR,:ch

=1-—¢c"Rc
.

1
=1+-cla,
Y

1

R}
where the second, third, and fourth equations follow from

the definition of generalized inverse, (2.17) and (2.18),
respectively.

—l— 2.19
-—= (2.19)

I1L.

In the absence of noise, the matched filter output vector
is y= Hx. Thus if the signal set is linearly independent
(i.e, H invertible), the natural strategy to follow in this
hypothetical situation is to premultiply y by the inverse
crosscorrelation matrix H~!. The detector £=sgn H 'y
was analyzed in (8], where its performance was quantified
in the presence of noise. In [6] it was erroneously shown
(cf. [3]) that this detector is optimum in terms of bit-error
rate. Note that the noise components in H~'y are corre-
lated, and therefore sgn H™'y does not result in optimum
decisions. It is interesting to point out that this detector
does not require knowledge of the energies of any of the
active users. To see this, let j, =y, /yw,, i.e,, J; is the
result of correlating the received process with the normal-
ized (unit-energy) signal of the kth user. Then

sgn H-ly =sgn w~12R-1~1/%
= sgn W~ VIR 1}

=sgn Ry,
and therefore, the same decisions are obtained by multiply-
ing the vector of normalized matched filter outputs by the
inverse of the normalized crosscorrelation matrix. Apart
from the attractive asymptotic efficiency properties shown
below for the decorrelating detector, further justification
for its study is provided by the fact that it is the solution to
the generalized likelihood ratio test-or maximum likelthood
detector (e.g., [12, ¢h. 2], [13, p. 291]) when the energies are
not known by the receiver. This approach selects the
decisions that maximize the maximum of the hkelihood

THE DECORRELATING DETECTOR
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function over the unknown parameters, i.e., (cf. (2.5))

2
[ ’[rm— T bksk(t)] d
0 k=1

b3€arg min min
be(=11}¥ w>0
tomlyeen,

=arg min min y"H 'y +b6"Hb-2bTy
be{~11)k w>0
=1, - K
=arg min min
be{-11}K w>0
t=l, . K

FTR™G + TV RW -2 W)

=sgn (arg min x"Rx - 2xrﬁ) =sgn R~y
xeRX
Since in this paper the signal set is not constraned to be
linearly independent, the above detector need not exist. In
general, we consider the set I(H ) of generalized inverses®
of the crosscorrelation matrix H and analyze the proper-
ties of the detector

£=sgnH'y, (3.1)

which we refer to as a decorrelating detector.
The &th user asymptotic efficiency achieved by a gen-
eral linear transformation 7 can be obtained in a way
similar to that of the efficiency of the conventional single-

user detector T = [ (Section II). The first step 1s to find
the bit error probability of the kth user:

P, =P[%, =1x,=~1]=P[(THx + Tn), > Ox, = —1]

= P{(Tn)k >(TH )~ Zk(TH)k/"’;]
R

=2k ¥

xe (~1,1)¥
X, = =1

P[(Tn)k>(TH)kk_ >z (‘H)klxj]'

J*k

(3.2)

Since the random variable (Tn), is Gaussian with zero
mean and variance equal to (THTT),,02, the sum in (3.2)
is dominated as ¢ — 0 by the term

2""@(((TH)kk— T (TH),) /o\/(THTT)kk). (33)
J*rk
Hence, according to defimtion (1.1), the kth user asymp-
totic efficiency achieved by the linear mapping T is
(TH) o~ X (TH )|

2, (T) = max*{0, = A . (3.4)

e (THTT),,

Thus the kth user asymptotic efficiency of a decorrelating
detector with matrix H' is given by

(HH) 4~ L UHH) )
jrk

2. (H') = max*{0, :
' P J(HHET),

\

(35)
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Proposition 2: 1f user k is linearly independent every
H' e I(H) satisfies

nw(H'") =1/Rf,. (3.6)

Thus for independent users the asymptotic efficiency of
the decorrelating detector is independent of the energy of
other users and of the specific generalized inverse selected.

Proof: If user k is linearly independent, we estab-
lished. in Lemma 1 that (H'H),,=§,,. Hence it follows
from (3.5) that

1
L Y

. (H') oL (3.7)
Using the defining properties of generalized inverses
(see footnote 2) it is easy to check that if A€ I(R),
then W24 W~1/2c [(H), and if B€I(H), then
W'/2BW'/2 & I(R). Hence there is an obvious bijection
between I(R) and I(H). Note that H* need not be the
image of R* in this bijection. However, the inverse image
of H*, say R* € I(R), satisfies

w Hy = Wk(W—lﬂR'.W-Vz)kk = R- (3.8)

Moreover, since user k is linearly independent, Lemma 1
implies that the denominator of (3.7) is equal to the left
side of (3.8) and that the right side of (3.8) is equal to R,.
Proposition 2 follows.

In Section IV it is shown that if user k is linearly
dependent, then

mi= sup w(H')= sup n(T)=n,
H'e I(H) T & R¥*xXK
i.e., the best decorrelating detector and the best linear
detector achieve the same kth user asymptotic efficiency.
Proposition 3: The near—far resistance of the decorrelat-
ing detector equals that of the optimum multiuser detector,
ie., forall H' e I(H),

inf n,(H") = inf n,=7%,. (3.9)

W/ZO leo

jrk jrk
Proof: 1f user k is linearly independent, then accord-
ing to Proposition 1 the near-far resistance of the opti-
mum detector is equal to the asymptotic efficiency of the
decorrelating detector (Proposition 2), which is indepen-
dent of the energy of the other users. If user k is linearly
dependent, Proposition 1 states that the near-far resis-

tance of the optimum detector is zero, and hence the same
is true for any detector.

The resuit of Proposition 3 is of special importarce in a
near-far environment, where the received signals have
different energies and where the energy ratios may vary
continuously over a broad scale if the positions of the
users evolve dynamically. In this environment any decorre-
lating detector, with its linear time-complexity pe- bit,
offers the same near-far resistance as the optimum mul-
tiuser detector, whose time-complexity per bit is exponen-
tial.

t
ST

[
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For the case where the signal set is independent, i.e., H
is nonsingular (and 7 =7, (H™") is energy-independent
for all users), a geometric explanation for the equality of
7, and 5 can be given in the two-user case. Recall that
the received signal y satisfies: y = Hx+n and the noise
autocovariance matrix is H. To have spherically symmetric
noise, it is convenient to work in the H~'/%y domain. Here
the hypotheses, denoted by A,B,C,D in Fig. 1, are at the
points H'/%x, with x € {~1,1)2 Since in this domain the
matched filter output noise is spherically symmetric and
Gaussian, the decision regions of the maximum likethood
detector, determined by the minimum Euclidean distance
rule, are given by the perpendicular bisectors of the seg-
ments between the different hypotheses, and the kth user
asymptotic efficiency corresponds to the square of half the
minimum distance between distinct hypotheses differing in
the kth bit.

Fig. 1. Hypotheses and decision regions in two-user case.

The decision regions of the decorrelating detector are
cones with a vertex at the origin, such that application of
H~! maps them to the coordinate axes. Thus in the
H~'/?y.domain the decision cones pass through the points
H'/%, with e the unit vectors in R2 These points are at
the center of the sides of the parallelogram formed by the
hypotheses, because the unit vectors can be represented as
half the sum of adjacent hypotheses. So, the decorrelating
detector decision boundaries are parallel to the parallelo-
gram sides and intersect it at the centers of its sides. The
k th bit-error probability (by symmetry we can assume that
the transmitted bit was —1) is the sum of two integrals,
one for each possibility for the remaining bit, of the noise
density function over the region in which the kth bit is
decoded as 1. In this case the kth bit-error probability can
be easily computed by taking advantage of the aforemen-
tioned properties. To this end we rotate' the coordinate
system to let the y axis coincide with the kth-bit decision
boundary and use the equal distance property of the
decision boundary to the hypotheses, to observe that the
two integrals are equal. We then use the spherical symme-
try of the noise to identify each integral as a Q-function of
the distance of the hypothesis to the decision boundary.
Hence the k th user.asymptotic efficiency of the decorrelat-
ing detector is equal to the square of the distance of any
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hypothesis to the kth bit decision boundary. Thus, in Fig.
1, \/;E is the length of the shortest of the segments AM,

AO and BO, and \/uf is the length of AP, The result of
Proposition 3 can now be interpreted as follows. Since 7
appears as the hypotenuse and 47 as the leg of a right-
angled triangie, 7 is lower-bounded by the energy indepen-
dent 7. However, since the triangle angles vary with
increasing energy of the interfering user waveform, there is
a particular energy ratio for which the triangle degenerates
into a line segment. This is the point when 5 reaches its
minimum 7%, which is geometrically identical with n% For
the parallelogram formed by the hypotheses, this is the
case where a diagonal is perpendicular to a side (e.g., AO
perpendicular to CD).

IV. THE OpTIMUM LINEAR MULTIUSER DETECTOR

We now turn to the question of finding the optimum
linear detector. We have seen that this is a fruitful ap-
proach, since a particular type of linear detector, the
decorrelating detector, offered a substantial improvement
in asymptotic efficiency compared to the single-user detec-
tor, while its near—far resistance equaled that of the opti-
mum multiuser detector. While we now know that no
detector, linear or nonlinear, can outperform the decorre-
lating detector with respect to near-far resistance, for
fixed energies it is indeed possible to obtain linear detec-
tors that have a higher asymptotic efficiency than the one
achieved by the decorrelating detector.

We find the linear detector which maximizes the asymp-
totic efficiency (or equivalently minimizes the probability
of bit error in the low-noise region) and compare the
achieved asymptotic efficiency to the ones achieved by the
conventional and optimal detectors. Thus we ask which
mapping T: R¥ = R¥ maximizes the asymptotic efficiency
of the decision scheme

£=sgn(Ty) =sgn(THx + Tn). (4.1)

The interpretation of this optimization proolem in terms
of decision regions is to find the optimal partition of the
K-dimension hypotheses space into K decision cones with
vertices at the origin. The surfaces of these cones deter-
mine the columns of the inverse T~! of the mapping
sought. Application of T on the cone configuration will
map the cones on quadrants, after which a sign detector is
used.

The kth user asymptotic efficiency of a general linear
detertor, as given by (4.1) was derived in (3.4):

(TH)kk_ Z [(TH)le

K
1(T) = max*{0, 4
¢ Mo (THTT),,

. (42)

The best linear detector has the asymptotic efficiency
M= sup 7(T). (4.3)
T € RF*X

Hence the asymptotic efficiency of the best hinear detector
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is equal to
T,
hiv— 3 [AT|
[ 2 jrk
N, = sup max*“{0,
ve RX M ‘/UTHU

=max2{0', sup m(”)} (4.4)

ve R¥
with

T
hTo— Y L3
jek

nk(v)=—‘/w—;——‘/'ﬁv—

where v denotes the kth row of T. To minimize the
probability of P,, we have to maximize the argument of
the Q-function, and equivalently maximize the asymptotic
efficiency 7,(v), with respect to the components of the
vector v. Since the map applied on the matched filter
outputs is linear, the asymptotic efficiencies of all the users
can be simultaneously maximized, each such maximization
yielding the corresponding row of the map to be applied.
For the sake of clanty, we first consider the two-user case,
for which explicit expressions for the maximum linear
asymptotic efficiency can be obtained.

4.5)

A. The Two-User Case

Throughout this subsection we denote the normalized
crosscorrelation between the signals by p = R,,. We first
give an explicit expression for the optimum linear detector.

Proposition 4: The kth user optimal linear transforma-
tion T,(y)=10"y on the matched filter outputs prior to
threshold detection is given by

ol = [l; —sgn p min {1, |P|(Wk/“’:)l/2}]

={[1;—Sgnp], if (w,/w)'* < lpl (47)

(4.6)

b7, otherwise

where b7 is the kth row of the decorrelating detector and
(i, k)€ {(1,2,(2,1)).

Prouof. Without loss of generality, let A =1. We have

P [ W PYW1W,
pywywy W,
1 #lo—|aly
m(v) = T Vo
. 1+ p(wy/w) 20, = o (wy/wy)' 2+ (/) 0]
\/1+2P(W2/W1)1/2”2 +(wy/w) 03

], o =[1; v,] (4.8)

(4.9)

and the objective is to maximize the nght side of (4.9) with
respect to v,. We consider the case |p] =1 separately.
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a) Case |p| # I: Introduce an indicator function for the
absolute value term:

1, p+(wy/w) 20, >0
I=1-1, p+(wy/w)! %0, <0 (4.10)
0, else '
Then
ﬂ-‘._ (l-pz)(WZ/wl) (1+U)
- w1\3/2 2/
dv, (1+2P(W2/W1)V202’*‘(Wz/Wl)Uf)
(4.11)

Therefore, we should take v, = — I when this is consistent
with the definition of / as a function of v,. Thus

1, if I==1e0<(w/w)" <-p

U, =
-1, ifI=1e0<(wy/w) Y <p

(4.12)

As can easily be seen, both values correspond to maxima.
If neither of these conditions is met, the derivative does
not have a zero. The optimal value for v, can be deter-
mined by taking a closer look at the Behavior of d7,/dv,,
in Fig, 2.

\ Ir\——/— v:
MW'Z !
v \

vy 2l

. Fig. 2. Behavior of derivative in (4.11).

For both I=1 and I=-1, the derivative of 7, is
positive for v, smaller than the abscissa of the zero of the
derivative (which is equal to — I), and negative after-
wards. Due to the nonlinearity of 7, the derivative has the
form corresponding to I = —1 for v, < — p(w,/w;)/? and
the form corresponding to I=1 afterwards. Since the
second branch (for I=1) turns negative before the first
one, we have to take the largest value of v, yielding a
positive derivative on the first branch. It can easily be seen
that in the “no-zero” case, —1 < = p(w,/w;)!/2 <1, this is
the point of discontinuity, ie., v, = — p(w,/w;)2 Note
that for p =0 we get o' ={1;0], the identity transforma-
tion, as expected, since the users are then decoupled and a
single-user detector is optimal. By taking the inverse of R
we also see that in-the no-zero case the optimal transfor-
maticn vector is exacdy the corresponding row of the
inverse correlation matrix.
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b) Case |p| = 1. Equation (4.9) becomes

)1/2
(4.13)

"h(vz) = sgn(l +sgn P(Wz/Wl)l/ZUz) ‘(Wz/wl

We see that, for (w,/w,)!/* <1, any v, satisfying v, sgn p
> —(w,/w,)'”% 1s optimal, in particular the one given in
(4.7). Otherwise, the asymptotic efficiency of the best
linear transformation 1s zero, hence all linear transforma-
tions are equivalent,

Substituting the result of Proposition 4 into the asymp-
totic efficiency of (4.9), we obtain the following

Proposition 5: The kth user asymptotic efficiency of the
optimal linear two-user detector equals

n£={

for (i, k) € {(1,2),(2,1)}.

The kth user asymptotic efficiency obtained in the
range (w,, w, ) 2 <|p] equals the optimum asymptotic effi-
ciency, obtained in (2.12). Even ouiside the region of
optimality, the best linear detector shows a far tetter
performance than the conventional single-user detector
(see Fig. 3), since if w;/wj > p?, then 4} is independent of
w,/w;, whereas according to (2.7) the asymptotic effi-
ciency of the conventional detector is equal to zero for

M’1//wk 2 1/002°

if (w,/w, )" < lpf
otherwise

1= 2lpl(w,/w) 2+ w,/w,,
1-p?,
(4.14)

asvwproncd  oeeeee OPTIMUM MULTIUSER OETECTOR
B aEneY DECORRELATING DETECTOR
————— CONVENTIONAL SINGLE-USER DETECTOR
e S
\\ ,,,
s -~
1-p? \:~‘ ==
N
~
~.
~
~.
1 Rl | -
iel 171p} Yy /w,

Fig. 3. Asymptotic efficiencies in two-user case (p = 0.6).

There is an intuitive interpretation of the dual behavior
of the best linear detector and of the boundary point
(w;,/w)*=|p]. Let k=1. The input to the threshold
device corresponding to the first user, z,= o'y, has three
components:

H= Wl[(l -p*)+ P(P + "2(“’2/“’1)1/2)]3‘1
+w [(Wz/wx)vz(P + Uz(Wz/Wx)l/z)]xz +7 (4.15)

where 7/ is a Gaussian random variable of variance
wio2[(1— p2)+(p + vy(wy /w)?)2). For (w,/w)'/2 > |pl,
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the second term outweighs the second part of the first
term, so the best one can do is to eliminate it by choosing
vy = — p(w,/w;)'2 (the decorrelating detector). Since this
minimizes the noise variance at the same time, it is the best
strategy in this region. If, however, (w,/w,)!/? <|p|. and
v, is such that the term p(p + v,(w,/w;)'/*) is positive, it
is a better policy to allow interference from user 2, which
is compensated by the second part in the first term. and
use the residual positive contribution in the first term to
increase the SNR as compared 1o the decorrelating case.
We have seen that this strategy leads to the same perfor-
mance as the more complex maximum likelihood detector.

Note that in the two-user case the signai energies and
cross correlations canaot be picked so as to allow buth
users optimal performance at the same time. for user 1 we
need (w,/w;)!/2 <|p| <1, whereas for user 2 we need

(wy/w)* > 1/1p] > 1.

B. The K-User Case

Unlike Propositions 2 and 5, in the general K-user case
it is not feasible to obtain an explicit expression for the
asymptotic efficiency achieved by the best linear detector

Proposition 6. The kth user asymptotic efficiency of the
best linear detector equals:

!

7}, = — max?

Wi

{0, max n(e)} (4.16a)
e e{~11})
J*k
with

n(e)= max oHv (4.16b)

ve RX
JHo=1
ghﬁ;zo

1™k

where the ith component of v, is equal to
i#k

—-e
0,);= "
(=); {1, i=k
Then the maximum 7(e) is achieved for  such that

v+ 2 Aeu
/2
[ )

j*k

o=
o Ho, + oTH Aeu
J%k

(u)), = {‘l’ e (4.17)
e,h15>0for j#k (4.18)
h5#0=),=0 (4.19)
Aj20,  j#k. (4.20)

Proof: Let
St = {xERK:h;’»'xZO}
Sy ={xeR*:#Tx<0}. (4.21)
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From (4.5) we seek

1
sup (th— > |th|)
verx Vo'Ho \© PrYe
1
= max  su T hjo—~ Y |kT ) (4.22)
e €(~1.1) zenS’t Yo ( ) J*A
J*k J
= ma , with
eIE{—’g.l)n(E) with 7 (e)
J*k
= su v~ 3, |AT ) (4.23)
vergs;: UTHD( *

J2k

J
From the definition of v, we see that the term in parenthe-
ses equals vOHv Now veEN S h >0, y#k, and
since nj, is invariant to scalmg of v, ‘maximization of the
given functional over R¥ is equivalent to maximzation
over the ellipsoid v"Hv=1.

This proves the first part of Proposition 6. We now have
to perform two maximizations where the second one has
the explicit form of an exhaustive search. We turn our
attention to the inner maximization in (4.16). We first
show that it is possible to replace the feasible set therein
by an equivalent convex set, i.e., the asymptotic efficiency
is unchanged if we replace

n(e)= sup o Hvobyn(e)= sup olHv. (4.24)
ve RX ve RK
o He=1 dHo sl
e,hlrvz 0 e,h,rvz 0
J*k 1%k

To show (4.24), let y H'/zv 7= jth row of H’/2 It
then follows that hT =]y, v TH’/z—yT v Hy=yTy=
[¥I% and

7(e)= sup ply= sup |y,]jpjcosa (4.25)

yeRX yeR¥
Iyl=1 Iyl=1

e,:,ry 20 e,z,ryzo
J*k %k

where « is the angle between the vectors y, and y. Since
the inequality constraints are linear and partition the space
into convex cones with vertex at the origin, the optimal
angle « is independent of | y|. Either the optimal cosa is
nonnegative, in which case 7(e) is maximized for |y|
maximal in both versions, or it is negative, in which case
n(e) <0. In either case, the value of %}, which involves
comparison with zero, is unchanged if the maximization is
performed over the interior of the ellipsoid, which com-
pletes the proof of the claim.
We now have to consider the following problem:

n(e)= inf
o€ RX

JHo-150

—e,lcfoso
Jrk

- o Hv. (4.26)
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Since this is a mi.mization problem of a continuous
convex function "n a compact convex set, it achieves a
unique minimum on the set. Since all the functions are
differentiable, we can apply the Kuhn-Tucker conditions
(e.g., [4]), to get from condition (1),

— Hy,+ A 2Hb— Y, Aseih, =0,
Ink

hence -

5= (4.27)

1
ZA(o+zx,,,)

with u . the jth unit vector, as defined before. Equations
(4.18) and (4.19) result fror the Kuhn-Tucker conditions,
condition (4.20) expresses the nonnegativity requirement
for the A,. There is one more constraint to satisfy, which 1s
THD=1:

1=8"Ho= e,hTs

171

o Hp
(v‘,THi‘>+ T A ) %
Jnk

1
2N, 2N

[

We used condition (4.19) to get the last equality, so

2\, =oTHo=1(e), (4.28)
and since
v Hi = 3 (voTHvo+ Z )\jejhlr )
[4 Jj*k
we get

1/2
2A,= (UZHUO+0:H > )\je,u}) .
JjHak

This together with (4.27) completes the proof of Proposi-
tion 6.

In Appendix II we show an explicit procedure for find-
ing the best linear detector characterized in Proposition 6.
Its asymptotic efficiency is trivially upper- and lower-
bounded by that of the optimum and decorrelating de-
tectors, respectively. For certain values of energies and
crosscorrelations these bounds are attained; sufficient con-
ditions for this to occur are given in Propositions 7 and 8.

Proposition 7: The following are sufficient conditions on
the signal energies and crosscorrelations for the best linear
detector to achieve optimal kth user asymptotic efficiency:

w, > max w;IR, 4.29
‘/—? judiees, (leﬂ Z ¥ l /l) ( )

Proof In the optimality case, we show in Appendix II
that e 7o, > 0 for all j# k. If we introduce ¢, =1 this has

to hold also for j=1Fk, otherwisc we get negative asymp-

[ U—

depreery

| RS ——
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totic efficiency. We can rewrite these conditions as

Hy, ee Hyy
Hy

e, H
DHD(_I_I"'I"‘—-l)T= lZ. 2

eiexHy exe,Hyy

where D is the diagonal matrix with ith diagonal element
equal to e,. We now see that a sufficient condition for the
above inequality to hold for some e,,---, ey is

j IHul> $IHL,  j=1 K.
1wk

The corresponding e; are e; =sgn H,. Hence (4.29) fol-
lows by replacing H,, by Jww, R, .

Note that the above condition can be »atisfied by only
g one user because

Wi > /1R 1>

Proposition 8: If user k is linearly independent, the

following condition is sufficient for the kth row of the

decorrelating detector H' € I(H) to be the best kth user

‘ linear detector for a given set of signal energies and
% crosscorrelations:

|Hjjl < Hyp, (4.31)

Proof: We showed that in the terminal case o=
ki /yH/, is a maximizing vector for v]Hv, hence there are
nonnegative Kuhn-Tucker multipliers A, such that, with

} (4.27; and (4.28),

for all j.

forall j # k.

hy

L= =H’(D+EA~€U)
m kk % j*kjjj

or
i —I",!I,‘=[(Al_l)ep"'al)"'a(AK_l)eK]T

SO
(4.32)

Hence (4.31) is sufficient to ensure A; >0 regardless of
(e, i#k}.

Note that in the two-user case, Proposition 5 implies
that the sufficient conditions found in Propositions 7 and
8 are also necessary.

Aj=1+ejHjlk/.Hl{k’ j%k.
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e H,; eexH :}

e,H,, e.e . H

z:u zKE 2K o >0 (430)
exHyy Hyy —l_l

ie., for a dependent user the best decorrelating detector
has the same asymptotic efficiency as the best linear detec-
tor.

Proof: Recall the bijection between I(R) and I(H)
established in Section III. Let R’ denote the image of H'
under this bijection. Then, using (3.5) for the last equality,
we can write

ﬂz= sup "?k(HI)= sup "Ik(W-l/zR'W-lﬂ)
H' e (1) R'e I(R)
(RR) = L W(R'R)4 1=
2/ jak YWk
=max*{0, sup .
R' & I(R) V(R'RR"),, f
(4.34)

Since R is nonnegative definite of rank r, it can be written
using its orthonormal eigenvector matrix T and the r X r
diagonal matrix A of nonzero eigenvalues of R, as

—rlA Ofrr
R-—T[O O]T

Then (cf. [10]), R! is a generalized inverse of R if and only
if, for some matrices U and V of appropriate dimensions, it
can be written as
P IV LR 4
R T[ U UAY

Hence, using the corresponding partition of T, we can
write

(4.35)

]TT. (4.36)

[ 1 0 T1T-
(R'R) s, =uf[T, TZ]_UA 0][T2T u,

=ul (T, T] + TUATT )u,

[ A =1 r Wrr
RRR'Y.. =uT[T, T,]| & U Ly
(RRR"y=allr Rl A U7,

Proposition 9: If user k is linearly dependent, then =ul(TA'TT + TUT]
= sup n(H')= sup 9,(T) =4, (4.33) + TWUTT + LUAUTTT )u, (4.38)
H e (H) T € RKxX
; and
T T, T T W
up (T + TLUA)Tuy - Zk|"k(Tx+ TUA) T uj| oy
j v
7§ = max?{0, sup S = (4.39)
U e RIK- 0 Jul (T, + TUA) AT, + TUA) T,

il &




LUPAS AND VERDU: LINEAR MULTIUSER DLTECTORS

Since user k is dependent, ulT,, whose components are
the k th componeits of the eigenvectors to eigenvalue zero,
is nonzero. (Otherwise, for all x with Rx =0, x, would be
zero, which implies that the kth user is linearly indepen-
dent of the other users.) Hence since A is invertible, we
can make the change of variables

x=(T,+UA) u, (4.40)
to get
3
<"1 u, - Y. |xTTlruj|{—;.-
7d = max?{0, sup A : (4.41)
X ‘/xTA"x

Using the same reasoning as in the proof of Proposition 6
for the best linear detector, we can write

1
79 = max?{0, max sup — o WViTx
ee(=11)  ,epr Wk
Ak A" lr -l
:I:TTITMIZO
Jrk
(4.42)
where the ith component of v, is equal to
—e. i &
(”) = & ’ k’
o/ 1’ i= k

1
n‘;i = — maxz {0, max ni(e)} (4.438)

W, e e(~1.1
j*k
with
ai(e)= "~ sup o WYIx (4.43b)
xER'
TA"lxm1
ex T u20
jak

whereas the kth user asymptotic efficiency of the best
linear detector equals (cf. (4.16)),

1
! 2 !
= —max*{0, max e
Nk W, { e,e(-l.l)nk( )}
Jrk
with
! - T
7 (e)= sup olHo.
o€ RX
FHow1
e/h}'uzo
Iy
Let
v*eargni(e) =arg max ofHv.  (4.44)
p€ RX
THo~1
C},'jl’zo

j#k
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We show that x*=ATTW'/%* 1s feasible, and that
ol WV x* = nl(e):

e x* T u;=e "W/ 2T AT]u,

= ejvtTwl/zkwl/Zw- l/Z“l

1
=-=-¢;v*""Hu,
w
%
1
=—=¢;v*"h 20 (4.45)
‘/;7}
since ov* is feasible,
At =0 TWI2 AATIATT WV 2t
=o*THo* =1. (4.46)
Hence x* is feasible, and
ol W\ T x* = o W'\ 2T AT W'/ 2p*
= o/ Hv* =7 (e). (4.47)

We know that nf <7}, since the decorrelating detector
belongs to the class of linear detectors. We exhibited for
each e a feasible vector x*, which satisfied o] W1/2T x* =
7%.(e). Since from (4.43), n¥(e) = ol W'/?T,x for all feasi-
ble x, we have, for all e, n9(e) =7’ (e). Hence 7% > 7},
which establishes (4.33).

Since the kth user asymptotic efficiency depends only
on the kth row of the applied linear transformation,
optimization of 7,(H') over the class of generalized in-
verses for each dependent user k, yields different rows,
each belonging to a different generalized inverse. Conse-
quently, the collection of the K optimal rows need not be a
generalized inverse.

Finally, notice that the near—far resistance of the opti-
mum linear detector is equal to that of the optimum
detector, since it is shown in Proposition 3 that a particu-
lar type of linear detector, namely, the decorrelating detec-
tor, achieves optimum near-far resistance.

V. CONCLUSION

The main contribution of this paper is the establishment
of the fact that a set of appropriately chosen memoryless
linear transformations on the outputs of a matched filter
bank exhibits z substantially higher performance than the
conventional single-user detector, while maintaining a
comparable ease of computation. Moreover, the near—far
resistance of all proposed detectors is shown to equal that
of the optimum multiuser-detector.

Even though the worst-case complexity of the algorithm
used to find the best linear detecior is exponential in the
number of users, in a fixed-energy environment this com-
putation needs to be carried out only once; hence the
real-time time-complexity per bit is linear, in contrast to
the optimum multiuser detector. Moreover, a region of
signal energies and crosscorrelations exists in which the
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optimal linear detector achieves optimum asymptotic effi-
ciency.

The decorrelating detector is easier to compute than the
optimum linear detector, and it exhibits either the same or
quite similar performance, depending on the energies and
correlations. Since the decorrelating detector does not re-
quire knowledge of the transmitters' energies and it
achieves the highest possible degree of near—far resistance,
it is an attractive alternative to the optimum detector in
situations where the received energies are not fixed. The
only requirement for the signal of a user to be detected
reliably by the decorrelating detector regardless of the level
of multiple-access interference, is that it does not belong to
the subspace spanned by the other signals—a mild con-
straint that should be compared to the condition necessary
for reliable detection by the conventional single-user detec-
tor, i.e., that the signal is orthogonal to all the other
signals.

The most interesting generalization of the results of this
paper is the asynchronous code-division multiple-access
channel.* Due to the fact that in the asynchronous case the
channel has memory, a K-input K-output linear discrete-
time filter will replace the memoryless linear transforma-
tion studied in this paper.

APPENDIX ]

This appendix gives a summary of the results in [18). We show
that the problems of optimum multiuser demodulation and solv-
ing for the maximum asymptotic efficiency are nondetermumstic
polynomial time hard (NP-hard) in the number of users and
therefore do not admit polynomial time algorithms unless such
algorithms are found for a large class of well-known combinato-
rial problems including the traveling salesman and integer linear
programming. According to (2.5), the selectior: of the most likely
hypothesis given the observations is the following combinatorial
optimization problem.

MULTIUSER DETECTION-—~
Instance: Given K € Z*, ye€ QX and a nonnegative defi-
nite matrix H € QX*¥;
Find {b* € {~1,1)¥} that maximizes 25"y — 8"Hb.

Proposition 10. MULTIUSER DETECTION 15 NP-hard.

Proof: The proof of NP-hardness of MULTIUSER DETECTION
can be carried out by direct transformation from the following
NP-complete problem: [15].

PARTITION—
Instance: Given 1.€ 2%, {l,€2Z*, i=1,---,L};
Question: Is there a subset J< (1,---, L} such that
Lerli=Ziel?
Given [, --,,, we choose the following instance of
MULTIUSER DETECTION:
K=L
hyy=1l,

yk-o, 'k-].,...,K'

*Note added in proof: This has now been accomplished in the compan-
ion paper [19), using a different approach.
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With this choice, {/},-,1, } is a “yes" instance of PARTITION if
and only if

max 28y - 8Hb=0.
be (-1,1)¥

Proposition 10 can be generalized [2), (18] to deal with arbi-
trary finite alphabets which are not part of the instance (and
hence are fixed) of MULTIUSER DETECTION, .., the problem is
inherently difficult when the number of users is large, regardless
of the alphabet. size. It is an open problem whether MULTIUSER
DETECTION remains NP-hard when H is restricted to be Toeplitz.
If this is the case, then it can be shown (18] that the problem of
single-user maximum likelihood detection for intersymbol inter-
ference channels [17] is NP-hard in the length of the interference.

The usefulness and relevance of Proposition 10 stem from the
fact that when the users are asynchronous, the cross correlations
between their signals are unknown a priori and the worst-ca =
computational complexity over all possible mutual offsets is the
complexity measure of interest sincs it determines the maximum
achievable data rate in the absence of synchronism among the
users. Actually, no family of signature signals is known to result
in optimum demodulation with polynomial-in-K' complexity for
all possible signal offsets. Thus even if the designer of the signal
constellation were to include as a design criterion the complexity
of the optimum demodulator in addition to the bit-error-rate
performance (which dictates signals with low crosscorrelations),
he would not be able to endow the signal set with any structure
that would overcome the inherent intractability of the optimum
asynchronous demodulation problem for all possible offsets.

The performance analysis of the optimum receiver for arbutrary
energies and crosscorrelations is also inherently hard. According
to (2.11) the maximum achievable asymptotic efficiency is ob-
tained as the solution to multiuser asymptotic efficiency.

(A1)

MULTIUSER ASYMPTOTIC EFFICIENCY—
" Instance: Given K € Z*, k€ {1,--,K}, and a nonnega-
tive definite matrix i € Q¥*X;
Find: the kth user maximum asymptotic efficiency,

1 T
N =— min  €'He,
Wi ce(~1,0,1)¥

g»0

o Proposition 11: MULTIUSER ASYMPTOTIC EFFICIENCY is NP-hard.

Proof: The proof is divided in two steps. First, —1/0/1
KNAPSACK is polynomially transformed to MULTIUSER ASYMP-
TOTIC EFFICIENCY. Then, —1/0/1 KNAPSACK is shown to be
NP-complete. In analogy to the 0/1 KNAPSACK problem (e.g.,
[16]) we define

—1/0/1 RNAPSACK—
Instance: Given L€ Z*, Ge€Z* and a family of not neces-
sarily distinct positive integers

{L,eZ*, i=1,--,L};

Question: Are there integers ¢, € {~1,0,1}, i=1,---, L such
that Tk ¢,/ = G?

We transform —1/0/1 XNAPSACK to MULTIUSER ASYMPTOTIC
EFFICIENCY by adding a user. Given {G,/, --,/,}, denote
l; ., =G and construct the following instance: K= L+1, k=L
+1, b=, 150, js K.

The K th user asymptotic efficiency is equal to zero if and only
if {G,h,---,1,} is a “yes” instance of —1/0/1 KNAPSACK. To
see this, note that we can fix ¢, = ~1 in the right side of (2.11)

i IS —
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without loss of generality. Then,

1 K~-1 . K-1
=== min {hKK+ Z €, _ZhnK+ z cmhnm }

G ¢, e{=1.0,1 - -
(lsSsK'—l) nwl mwl
1 K=1 2
=-—  min G- .| . A2
G? «,e(~1.o.n( ,,2_:, (A2)
1515sK~1

The proof that ~1/0/1 KNAPSACK is NP-complete can be
‘found in (18). :

APpPENDIX 11

We give here an explicit procedure for finding the maximizing
vector © given implicitly by Proposition 6. The idea is the
following: condition (4.19) states that if the maximizing vector &
lies in the intersection of a subset of-the delimiting hyperplanes
with equations 475=0, j &S, with S the index set of the specific
hyperplanes, only the A, j €S are possibly nonzero and enter
into the expression defining 6. Thus we have |S] equations with
|S] unknowns, which we can solve o get the A, and then . To
state (and prove the correctness of) an algorithm that finds the
optimum linear transformation, the following terminology is used.

Definition 1: Let S be an index set {ji, """, j,}, 0sng
K -1, with jj, -+, j,€(l,---,K}~{k}, labeled in increasing
order. Define

Ao H. ven H.

Ad Jh i

T " e
Dg(j) =det| %% Hui Hul.  (A3)
hj.’:oo }{/njl ':Illil !

Definition 2: We introduce an indicator for the second
Kuhn-Tucker condition:

if ¢, Dg(j) >0, then G5(j) =yes,  else G(j) =no. (A4)

Definition 3: An n-tuple S of (1,---,K}—={k} is marched if
for all i € §: s,y (i) = no.

Definition 4: An n-tuple S contains a basis B if (k;|j € R} is
a basis for {4 |j€S}.

Proposition 12: The following algorithm finds a vector & satis-
fying (4.17)-(4.20).

A. Search for the index set with least cardinality S ¢

(1,---, K} = {k}, for which A, i €S, are possibly nonzero

n=0
all n-tuples := untried; S, := matched
WHILE 1S K =2
WHILE there is still an untried n-tuple containing a matched
basis B
select untried matched n-tuple :=,, contained matched
basis = B
IF for all j&S,, j # k, Cy4(j) = yes, RETURN S,, B,stoP
ELSE S, = tried
RETURN
n=n+l
RETURN
“decorrelating detector is optimal,” output {2,---, K} —{k},
STOP.

B. Computation of the A;:

i€B A\=0
i€ B: X\, are the solutions of the |B| equations |B| unknowns
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#To=0, i € B, where

v=g,+ ), Aeu,.

i€
C.
o+ L Aeuy,
. ic8
o = /2"
(oZHq,+oZH > )\,e,u,)
ies

Comment: Recall that this procedure has to be repeated for all
the different {e } in search of the maximal n(e) value, until
either the efficiency 7(e) reaches the upper bound given by the
optimal detector, or all 2% possibilities have been exhausted,
Prior to running the algorithm, the sufficient conditions given in
Propositions 8 and 9 should be checked.

Proof: Conditions (4.17) and (4.19) are obviously sausfied
by construction of & in C, and the requirement A]5=0 for the
possibly nonzero A, in B. To prove conditions (4.18) and (4.20),
consider the system of |B| linear equations in |B| unknowns of B,
From A the set B is matched, and satisfies Cg(s) = yes for all
j#k, j&S, We have to show a) A, 20, for all 1=1,2,--., K;
and b) Cp(j) =yes for all j#k, j&S§, is equivalent to condi-
tion (4.18).

a) A, =0, i € B, by construction of the-index set S, and B. For
i € B, in step B we solve A75=0, all i =1,2,--+,|B]. Let |B| = n.
Then

r
hjo,+Aje, H,.+ -+ +X e H, =0

N A" "hh
.
hig, + Ay Hypj+ oo+ X e, H, =0
h};vo +AeH+ A g H =0, (A.5)

Denote by D the determinant of the coefficient matrix of the
A e, Since B is a basis and the corresponding matrix is nonneg-
ative definite, Dy is strictly positive, Then, by Cramer’s rule,

A = ~ eleB“Ul)(j')
i DB °

The numerator is obtained by i row flips and i column flips to
get Jj, into position (1,1). Since the set B is matched, the
numerator is nonnegative. As obtained above, the denominator is
positive, hence A, > 0 for all i € B. This completes the proof of
a),

b) kjo=0, j€S5,. For j.&S,, j+ k, with the obtained values
for A compute the feasibility expressions:

ejh}'i'; - ejlc,T-( o+ ) A,e,u,)

i€l

(A6)

e
"’bl—(Da"}"’a‘*‘ )M _DB-(I)(i)Hjl)
B ies

1
e -D—Bej Dg(j) >0,
since Cg(Jj) = yes. The last cquality is obtained by expanding
along the first row of Dy(j). This completes the proof of b), By
construction the algorithm terminates after at most K ~2 steps.

(A7)

In part A of the algorithm notice that n:=0 corresponds to a
solution in the interior of the feasible cone, with all A equal to
zero, and =1,/ o/Hy,. The corresponding asymptotic effi-
ciency 1*(e)/w; = o/Ho, /w, =1, which is equal to the asymp-
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totic efficiency of the maximum likelihood detector as given by
(2.11). On the other hand, n=1 corresponds to a solution on
exactly one of the delimiting hyperplanes, with exactly one A
nonzero (call it A,), and

1 h;rq, \
b= 0, - =& (A.8)
n(e) H, |
and
KTo,)’
nZ(e)’-oIHoo-( ) (A9)

The asymptotic efficiency achieved in this case is bounded above
by the one for n =0, since the second term is nonnegative. If the
matrix H does not have a lot of structure, which is to be expected
in practical applications, this is the most probable case. For
increasing » the computadonal effort grows fast, but in most
cases the algorithm will terminate for very small n.

We also have an explicit solution for the “terminal case,”
n= K —1, which corresponds to the decorrelating detector case.
Then, without loss of generality, &= A} /JI_I,T,( , a scaled version
of the kth column of any generalized inverse matrix of H (in
particular of H*) and n(e) =1/H;}, which is equal to the kth
user asymptotic efficiency of the decorrelating detector, when the
scaling factor 1/w, of (4.16) is taken into account. This can be
shown as follows. In the terminal case AT5=0, for all j# k.
Hence

1
n(e) = max o/Ho= max Ajo= max —. (A.0)
ve RX o& RX veRX U
cHo=1 ATo=0 Ho= (1/v3 )y
J
r
Io,v-o ju‘k
Ik vyhlo=1

If user k 15 dependent, Ho=0 and n(e) = 0. Since this was the
best choice of o, we can without loss of generality replace & by
the kth row of any generalized inverse, because the resulting
asymptetic efficiency cannot become negative. If user k is inde-
pendent, Lemma 1 implies HH'u, = u,, and for all o in the
feasible set,

1
H'Ho=—H'u,.
Uk

Hence using Lemma 1 for both equations, we obtain

vk-»/f_IE—WTI’Z-

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL.. 35, NO. 1, JANUARY 1989

The feasible set in (A.10), F = {o|Hv=(1,’t, )4, }, is nonempty
(e.g, it contains the set {(1/v\)hi,H'€I(H))), and for
all vEF, vk=\/i_l_,f:. Hence n(e)=l/fo—,§. and with (3.8),
(1/w;)n*(e) =1/R},, which is the energy independent asymp-
totic efficiency of the decorrelating detector for independent
users.
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Computational Complexity of Optimum Multiuser Detection'

- Sergio Verdii?

. Abstract, Optimum centralized demodulation of the independent data streams transmitted simul-

tancously by several users through a Code Division Multiple-Access channel is considered, Each
user sends an arbitrary assigned signal waveform, which is linearly moduiated by symbols drawn
from a finite alphabet. If the users are asynchronous, the optimum multiuser detector can be

* implemented by a Viterbi algoritim whose time.complexity is linear in the number of symbols

transmitted by each user and exponential in the number of users. It is shown that the combinatorial
problem of selecting the most likely transmitted data stream given the sufficient statistics (sequence
of matched filter outputs), and the signal energies and cross-correlations is nondeterministic poly-
nomial-time hard (NP-hard) in the number of users. And it remains so even if the users are restricted
to be symbol-synchronous.

The performance analysis of optimum multiuser detection in terms of the set of multiuser asymptotic
efficiencies is equivalent to the computation of the minimum Euclidean distance between any pair
of distinct multiuser signals. This problem is also shown to be NP-hard and a conjecture on a
longstanding open problem in single user data communication theory is presented.

Key Words. NP-complete, Hypothesis testing, Code Division Multiple Access, Gaussian ccrarmunica-
tion channels, Maximum-likalihood sequence detection.

L. Introduction. The purpose of hypothesis testing problems is to select a so-
lution (decision) from among a finite set of possible solutions (hypotheses).
Typically, the number of hypotheses is small, in which case the inherent com-
binatorial optimization nature of the problem does not play any role and the
main question is to obtain the values of the likelihood function or other finite-
dimensional set of sufficient statistics. In this paper we study a data demodulation
problem where the reverse situation is encountered: it is straightforward to obtain
a set of scalar sufficient statistics but the number of hypotheses is very large.
An important problem arising in multipoint-to-point digital communication

. networks {e.g., radio networks, local-area networks, and uplink satellite channels)

is the optimum centralized demodulation of the information sent simultaneously
by several users through a Gaussian multiple-access channel. Even though the
users may not employ a protocol to coordinate their transmission epochs, effective
sharing of the channel is possible because each user modulates a different
signature signal waveform which is known by the intended receiver (Code
Division Multiple Access (CDMA)). Recently [1], optimum multiuser detection
has been shown to offer important gains in bit-error-rate performance over
single-user detectors, which are conventionally used in practice and neglect the

' This work was partially supported by the National Science Foundation under Grant ECS-8504752,

and by the US Army Research Office under Contract DAAL03-87-K-0062.
2 Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.
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presence of interfering users. The optimum muitiuser receiver can be viewed as
a bank of single-user detectors followed by a common algorithm that selects the
most likely transmitted symbols. The structure of this algorithm depends crucially
on whether or not the users maintain symbol synchronism. In the synchronous
case, it is enough to maximize a quadratic function, while in the asynchronous
case the way to get rid of the interference amorg the users is to employ a version
of the Viterbi forward dynamic programming algorithm [2], whose time-
complexity is exponential in the number of active users. It is shown in this paper .
that the problem is nondeterministic polynbmial-time hard (NP-hard) in the
number of users, and hence there exists no polynomial-time algorithm for
optimum multiuser detection unless such an algorithm is found for a large class .
of combinatorial problems, such as the traveling salesman and integer linear
programming problems. It is shown that the problem remains NP-hard even in
the synchronous case despite an earlier claim of existence of polynomial solutions
[3] for that case.

In Section 2 the multiple-access channel model and the maximum-likelihood
detection problem are formulated and it is shown that optimum multiuser detec-
tion is NP-hard in the number of users. In Section 3 it is shown that the
performance analysis of optimum multiuser detectors is intrinsically difficult due
to the fact that the computation of the minimum distance between any pair of
distinct multiuser signals is also NP-hard. Finally, Section 4 summarizes the main
points of the paper, discusses suboptimum alternatives, and presents a conjecture
on a longstanding open problem in data communication theory.

2. Optimum Multiuser Detection. Assume each of K users transmits indepen-
dent symbols by modulating a preassigned waveform from a signal constellation
{sk(1), te[0, T'], k=1,..., K}. If the users cooperate to maintain symbol syn-
chronism, the receiver observes the sum of the modulated signals imbedded in
noise, i.e.,

K
1 r(t)=k§l bisi (1) +n(1),

where the symbols by, k=1,..., K, are drawn by each user from a finite alphabet
A. A reasonable decision rule is to select the set of symbols corresponding to
that signal among the possible ones that resembles most closely (in a mean-square
sensej the received waveform. If the noise is Gaussian and white, then this rule
is optimum in the maximum-likelihood sense. If, furthermore, all vectors b=
(by,..., bx) e A are a priori equiprobable, then the minimum distance rule gives
the maximum-a-posteriori (MAP) decision. In the single-user case, this deteztor
is implemented by comparing the output of a matched filter with a set of
thresholds. Analogously, in.the multiuser problem we have

K
(2) arg min {|r(£)— ¥ bise(1)|| =arg max 2bTy-b" Hb,
beA® kw1 beA¥
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where Y= (¥1,+++» Yk ), yk=j'g' sk ()r(1) dt, i.e., yi is the output of the matched
filter of the kth user signal and the entries of the nonnegative definite matrix H
are given by

T
(3) hij:J; Si(t)Sj(t) dt.

If the signal waveforms are orthogonal, then H is a diagonal metrix and the
maximization in (2) decouples into K single-user problems. Otherwise (in prac-
tice, there may be bandwidth or complexity constraints that prevent the designer
from choosing an orthogonal signal set), a combinatorial algorithm is required

"to solve the quadratic optimization (2) over the finite set AKX given the vector of
sufficient statistics y and the signal cross-correlations H. Since the set of quantities
{bTy,be A¥} can be computed in O(|A|®) operations, an upper bound on the
time-complexity per bit (TCB)® required to solve (2) is O(JA|*/K log|Al). This
is the best available upper bound; in [3] it is claimed that a receiver whose
complexity is polynomial in the number of users (basically, if A={~-1, +1}, select
the sign of the components of H™'y) is optimal. Unfortunately, this claim is
erroneous; the mistake in the derivation of the detector is commited in equation
4 of [3] where it is implicitly assumed that the symbols put out by the detector
are uncorrelated with the noise component of the matched filter outputs.

More significant in practical applications is the case where the users are
mutually asynchronous, and indeed one of the chief advantages of CDMA
over other channel sharing strategies is that no type of coordination among the
users is required. Now, however, (1) is no longer a valid model. The delays
{r, k=1,..., K} account for the offsets between the signaling epochs and (1)
has to be generalized to

MK
(4 r()= Y T b(i)si(t—iT~m)+n(1),

1M kwmi

where by convention s,(¢) =0 for ¢t [0, T]. Now we can no longer restrict our
. attention to the one-shot case because optimum decisions are based on the whole
received waveform due to the interference between the symbols. The optimum
receiver [1] for the asynchronous case in the sense of selecting the most likely
sequence of symbols consists of a front-end of matched filters (just as in the
synchronous case) followed by a Viterbi dynamic programming algorithm with
|AJ¥~" states and a periodically time-varyiag branch metric. The TCB of this
decision algorithm is O(JA|%/log]A]), and hence the penalty in time-complexity
due to the lack of synchronism between the users is slight. The usefulness and
relevance of the computational complexity results proved in this paper stem from
the fact that when the users are asynchronous, the cross-correlations between

*The time-complexity per bit is defined as the limit of the ratio of total time to the number of
demodulated bits as this goes to infinity. Note that any preprocessing of the signal cross-correlations
does not affect TCB,
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their signals are unknown a priori, and the worst-case TCB over all possible
mutual offsets is the complexity measure of interest since it determines the
maximum achievable data rate in the absence of synchronism among the users.
Actually, no family of signature signals is known to result in optimum demodula-
tion with polynomial-in-K complexity for all possible signal offsets. So even if
the designer of the signal constellation were to include in his design criterion the
complexity of the optimum demodulator in addition to the bit-error-rate perform-
ance (which dictates signals with low cross-correlations), he would not be able
to endow the signal set with any structure that would overcome the inherent
intractability of the optimum asynchronous demodulation problem for all possible
offsets. On the other hand, in the synchronous case, the designer of the signal
constellation has more control on the cross-correlations (subject to constraints
such as bandwidth or number of chips per symbol in Direct-Sequence Spread-
Spectrum), and it is conceivable that there exist synchronous signal design
constraints that result in families of signature signals whose structure can be
exploited to result in optimum polynomial-time decision algorithms. This is the
reason why the computational complexity results of this paper appear to be more
relevant to asynchronous channels even though for the purposes of the proofs
in our lower bound analysis we may restrict attention to the special case where
all the delays coincide (7, =+ - = 7¢), because the optimum multiuser detector
must be able to deal with any arbitrary set of delays.

In order to ascertain that the intractability of the optimum multiuser problem
arises when the number of users is large and the alphabet size is kept constant,
we first fix an arbitrary alphabet A={a,,...,a,} (which is a set of integers
satisfying a, <a,.,), and define a class of instances of the combinatorial optimi-
zation problem for that fixed A.*

MULTIUSER DETECTION
Instance: Given K €Z*, ye @X, and a nonnegative definite matrix He Q**¥
Find; {b*e A¥} that maximizes 2b”"y~b" Hb.

ProposiTION 1. If |A]>1, then MULTIUSER DETECTION is NP-hard.

Proor. The proof of NP-hardness of MULTIUSER DETECTION can be
carried out by transformation from PARTITION, an NP-complete recognition
problem. Recall its definition [4]:

Instance: Given LeZ* and {lieZ*,i=1,...,L}.
Question: Is there a subset J<={1,..., L} such that ¥, ., =%, k?

For each instance ¢f PARTITION, we can find in polynomial time an instance
of MULTIUSER DETECTION whose solution can in turn be processed in

4 Note that since the alphabet A is not part of the instance, if a specific A is assumed, then the
corresponding NP-hard result is a corollary to Proposition 1. Actually, for A ={-1, +1}, the proof
of Proposition 1 can be simplified considerably by letting by =, and y, =0 therein.

P o
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polynomial time to give an answer to PARTITION. Given I, ..., I., we choose
the following instance of MULTIUSER DETECTION:

K=1[,
hy=1|11, i#j,

K
hy= I-Ii max{l,, (a— a:)_l[zam —ay—a] } Ij}]: i=1...,K
J=1

jri

K
yk=%(a,+az)(hkk+1k x I,), k=1,...,K
J=1
Jjrk

Note that this is a valid instance of MULTIUSER DETECTION, because H
is 4 nonnegative definite matrix. Once the solution to this instance of MULTI-
USER DETECTION is found, we can find the solution to the original instance
of PARTITION, because {l,,..., I } is a yes instance of PARTITION if and
only if

K 72 K
(5) max 2b"y~b"Hb= [%(al'*'az) 'Zl Il] taya; IZI (hu=1).

beA

Equation (5) can be shown by changing the variable in the left-hand side of (5)
b=1(a,— a;)z+3(a, +a,) and proving that it is enough to restrict attention to the
values z; =1 in the maximization in (5) (see [5] for details). 0

The foregoing proof shows that the same transformation works if the value of
the diagonal elements of H is arbitrarily increased. Hence MULTIUSER DETEC-
TION remains NP-hard if H is restricted to be strongly diagonal (an important
special case in CDMA with equal-energy users). Note that MULTIUSER
* DETECTION was defined for a fixed arbitrary alphabet. Thus, Proposition 1
implies that the problem is inherently difficult when the number of users is large,
regardless of the alphabet size (often a small integer). Conversely, in Section 2
w= saw that the problem is polynomial in the alphabet size for fixed number of

3. NP-hardress of Multiuser Asymptotic Efficiency. In this section we examine
the complexity of the performance analysis of optimum multiuser detection. The
purpose of this analysis is to evaluate the effect of the energies and cross-
correlations of the signal constellation on the bit-eiror-rate of the receiver for an
arbitrary level of background noise. It has been shown [6] that the key perform-
ance measure is the multiuser asymptotic efficiency, or ratio b tween the exponen-
tial decay rate of the bit-error-rates with and without interfering users. This
parameter effectively quantifies the degradation in bit-error-rate due to the pres-
ence of other users, in situations where the background noise is not dominant.
The asymptotic efficiency of the kth user, ny, is proportional to the Euclidean
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distance between any pair of transmitted signals whose kth symbols do not agree
[6]. Specifically, assuming synchronous users and antipodal modulation (i.e.,
A={-1, +1}), the kth user asymptotic efficiency can be expressed as

T K 2
min J [Z (b,‘-—b?)s,(t)] dt .
_blmit Jo Lim ——— : T
(6) Nk = T \ By ce(Tll.{)].l)" ¢ He.
41 se(n)dt ) £, "0
0

ProrosiTioN 2. The following problem is NP-hard:

MULTIUSER ASYMPTOTIC EFFICIENCY
Instance: Given K€Z™, ke{l,..., K}, and a nonnegative matrix He Z¥*¥
Find: The kth user maximum asymptotic efficiency,

M= (1/ bux) minee(—l,o,l)x.tk "0 e He.

ProoF. The proof is divided in two steps, first —1/0/1 KNAPSACK is poly-

nomially transformed to MULTIUSER ASYMPTOTIC EFFICIENCY, and then —
we show that —1/0/1 KNAPSACK is NP-complete. In analogy to the 0/1
KNAPSACK problem (e.g., [7]) we define

-1/0/1 KNAPSACK !
Instance: LeZ”, Ge Z*, and a family of not necessarily distinct positive integers

{heZ*,i=1,...,L}

Question: Are there integers ¢;€{—1,0,1}, i=1,..., L, such that Zf‘_, eli=G?

We transform —1/0/1 KNAPSACK to MULTIUSER ASYMPTOTIC
EFFICIENCY by adding an additional user. Given {G, |,,..., I.}, denote I+, =
G and construct the following instance: K=L+1,k=L+1, hy=4], 1=<i j=< K ’

The Kth-user asymptotic efficiency is equal to 0 if and only if {G, },..., I}
is a yes instance of —1/0/1 KNAPSACK. To see this, note that we can fix g, = ~1
in the right-hand side of (6) without loss of generality. Then, .

1 . K-\ h K=-1 h
(7 nx—aqemr})'l){hxx+"§| €n| =2hak +mZ-. EmMum }

IsisK-~1

1 ) ( G K- | 2 4
queﬁl&‘” —ni-:l Enln | -

|E2E ot |

Now we show that ~1/0/1 KNAPSACK is NP-complete. Its membership in
NP is obvious. Note that it is easy to transform —1/0/1 KNAPSACK to 0/1
KNAPSACK ({G,1,,...,I.} is a yes instance of ~1/0/1 KNAPSACK if and
only if {G, },, =k,..., I, =1 }-is a yes instance of 0/1 KNAPSACK). However,
we need to show the reverse transformation, namely, fixing any instance of 0/1

LSt




Computational Complexity of Optimum Multiuser Detecticn 309

KNAPSACK obtain an equivalent instance of —~1/0/1 KNAPSACK. The idea
is reminiscent of the polynosmial transformation of 0/ 1 KNAPSACK to POSITIVE
INTEGER KNAPSACK (see p.376 of [7]), and it consists of constructing an
augmented instance of ~1/0/1 KNAPSACK whose integers are large enough to
force every coefficient to be either 0 or 1. Choose an instance {G, /,,..., .} of
0/1 KNAPSACK, and construct the following instance of ~1/0/1 KNAPSACK
{anh- --)PzL}:

L
D=G+ 3§ M/,
jmt
_{IJ+M’ for 1sj=<L,
Pr=1mor for L+1sjs2L,

L
M=l+max{3, G+ ¥ Ii}.

iml

Then it follows from this choice that for all {¢,e{~1,0,1},1=i=<2L}

2L L L
(8) Y ap—D=~G+ Y eh+ L M(e+ee,—1).
im1

im] [L.3]

It is straightforward to show that M is too large to be a root of any L-degree
polynomial Z,L_o Bix', where B;e{-3,-2,—-1,0,1} for 1=i=<L and B,e
{-—G+Z::‘_l g, s1€{~1,0, 1}, 1=i= L}. Hence, (8) is equal to zero if and only
if all the coefficients of the polynomial in M of the right-hand side are zero, i.e.,

2L L
Yeap=D & ¥ gi=GCG and {¢=0,enn=lorg=1,¢6+,=0,1=i=l}.
iml im1

Therefore, {G, l,,..., 1.} is a yes instance of 0/1 KNAPSACK if and only if
{D,p,...,par} is a yes instance of —1/0/1 KNAPSACK. 0

Note that the proof of Proposition 2 shows-in fact that the problem of deciding
whether a signal constellation is uniquely decodable, i.e., whether different
transmitted bits result in the same waveform, is NP-complete.

4. Concluding Remarks, Suboptimum Algorithms, and Open Problems. It has
been shown that the problem of optimum detection in Gaussian multiple-access
channels is NP-hard in the number of users. This result holds for any nontrivial
alphabet even if the channel is symbol-synchronous. Exponential-in-K optimum
detectors for Poisson multiple-access channels with point-process observations
were obtained in [8], It can be shown that this problem is also NP-hard in both
the additive-rate and additive-light models of the channel.
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Not ofily is the optimum decision rule intrinsically difficult, but so is the analysis
of its performance due to the NP-hardness of the computation of multiuser
asymptotic efficiencies. It should be pointed out, however, that in many instances
of signal constellations used in CDMA Direct Sequence Spread-Spectrum systems
[9], the cross-correlations are low enough to pass sufficient conditions [6] ensuring
unit asymptotic efficiency that are computable in quadratic time in K. So, unlike
the situation we encountered in the optimum asynchronous demodulation prob-
lem, the worst-case complexity measure may be overly pessimistic for specific
instances exhibiting low cross-correlations.

What alternatives, then, does the designer have when the number of users is
large? The suboptimum solution currently employed in practice is the bank of
single-user réceivers (i.e., a matched filter for each user followed by a threshold).
Unfortunately, this scheme achieves far from optimum bit-error-rate and its
performance breaks down when the signal energies are dissimilar (the near-far
problem) [13. (6], [10]. Therefore, the search for approximation algorithms that
achieve nea optimum bit-error-rate with polynomial complexity appears to be
an open rese. :h area with important consequences in practice. Numerical results
indicate that performance extremely close to the single-user lower bound is
achievable in the bit-error-rate region of usual interest (10~ or less) by the
maximum-likelihood multiuser receiver even if the cross-correlation qualities of
signal constellations typically used in practice are considerably relaxed. This is
a sign that the Viterbi-based optimum multiuser receiver possesses an important
degree of redunidancy in situations with good signal sets and low background
noise and hence faster decision algorithms achieving similar performance are
plausible. Furthermore, a linear multiuser demodulator whose TCB is linear in
K is found in [10] to achieve the same worst-case asymptotic efficiency over the
energies of the interfering users’ as the optimum demodulator. While for specific
values of the received energies, its asymprotic efficiency (and hence, its bit error
rate) need not be close to the optimum one, its performance is guaranteed to
exceed a high lower bound in all cases of practical interest, thus making this
suboptimum demodulator an attractive choice from both the complexity and
performance standpoints.

Finally, let us consider an interesting special case of the asynchronous optimum
multiuser detection model in (4), namely the single-user intersymbol interference
problem,

r(t)= E b(i)s(t-iT)+n(1),
im—M *

where the duration of s(¢) is greater than T. In general, there is no known efficient
method to obtain the most likely sequence of transmitted Symbols given the
received waveform (TCB is exponential in the frame length M). However, if the
number of signals that interfere at any given time is bounded by, say, L, then it

3 This is calied the near-far resistance, a key measure of the robustness of the system against variations
in the received energies. ,




Prew

g

—

Computational Complexity of Optimum Multiuser Detection 3

is well known [11] that maximum-likelihood sequence detection can be imple-
mented by the Viterbi algorithm in TCB which although exponential in L is
independent of M. Despite many efforts (e.g., [12]-[14]) motivated by the impor-
tance of this problem in the area of data transmission through bandlimited
channels, no polynomial-in-L algorithm for maximum-likelihood sequence detec-
tion is known. This fact and the results of this paper lead us to suspect that we
may be facing another NP-hard problem. In fact following the same steps as in

- Section 2, it can be seen that the most likely sequence of symbols corresponding

to (13) is the one that maximizes 2b7y—b"Hb, where b= (b(~M), ..., b(M)),
y=(=M),...,y(M)), y(i)=fs(t=iT)r(t)dt, and H is the nonnegative
definite Toeplitz matrix (i.e., constant along diagonals) with entries given by
hy={s(t—iT)s(t—jT) dt. Hence if we specialize L =2M + 1= K, the underlying
combinatorial problem coincides with MULTIUSER DETECTION with an
additional restriction on the data:

Conyecture 1. MULTIUSER DETECTION remains NP-hard if H is restricted
to be Toeplitz.

Indeed, it appears that the Toeplitz-condition imposes an analytically incon-
venient restriction on the set of allowable instances. A possible route is to consider
the following restricted version of :he problem.

FIR

Instance: Given LeZ*, EcZ", and the coefficients of a finite-impulse response
(FIR) digital filter of length L (hjeZ,i=0,...,L-1).

Question: Does there exist an input sequence (b, e {—1, +1},i=0,..., L~1) such
that the output energy of the FIR is less than E, i.e.,

2L-2 /L1 2
2 (Z bjh,_,> =E?

(=0 \jm=0
ConsecTURE 2. FIR is NP-complete.

Similarly, the psoblcm of the performance analysis of the single-user intersym-
bol interference <hausel is equivalent to finding the minimum distance between
any pair of transmitted data streams. This problem for which no polynomial
algorithm in the length of the interference is known can be put as a special case
of MULTIUSER ASYMPTOTIC EFFICIENCY and it is not known whether it
is NP-hard.
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ABSTRACT

In this paper we consider a noncoherent, optical, asynchronous, code division multiple
access (CDMA) system. We present a semi-classical analysis of the error rate for a single-
user, matched-filter receiver that applies for arbitrary photomultipliers and signature
sequence sets, adheres fully to the semi-classical model of light, and does not depend on
approximations for large user groups, strong received optical fields, or chip synchronism.
We compare the exact minimum probability of error and optimal threshold to those
obtained with popular approximations on user synchronism or on the distribution of the
multiple access interference (MAI). For the special case of unity-gain photodetectors and
prime sequences, we show that the approximation of chip synchronism yields a weak
upper bound on the exact error rate. We demonstrate that the approximations of perfect
optical-to-electrical conversion and Gaussian-distributed MAI yield a poor approximation
to the minimum error rate and an underestimate of the optimal threshold. In this paper
we also develop arbitrarily-tight bounds on the error rate for unequal energies per bit. In
the case when the signal energies coincide, these bounding expressions are considerably
easier to compute than the exact error rate.

1. Introduction

Several users may independently access a common communication channel using code division mul-
tiple access (CDMA) modulation. This multiaccess scheme does not use time- or frequency-allocation,
and users may transmit without the delays inherent to multiaccess protocols. In the direct-detection
optical CDMA channel, interference immunity is achieved by the assignment of rapidly varying, on-
off waveforms. These waveforms, or signature sequences, are modulated by the data of each user and
concentrate the transmitted energy into relatively short time intervals in each symbol period. The trans-
mitted signals from the users are then combined on a common optical fiber. Single-user demodulation
is (suboptimally) achieved by correlating the aggregate signal and the signature sequence of the desired
user. As a result, the correlator output is the desired signal in additive interference, which is reduced
through the use of signature-sequence sets with low cross-correlation. A correlator receiver of this type
must know only the timing epoch of the desired user, and a common timing reference need not be sent
ta all transmitters.

In this paper we present the error rate of a particular single-user receiver in the noncoherent CDMA
optical fiber channel. This receiver has been the focus-of previous analyses and local area network pro-
totypes {1-3]. In contrast to-previous efforts we have avoided-making approximations to three analytical
obstacles. First, our analysis retains the quantized nature of electromagnetic radiation. While the par-
ticle nature of radiation may be neglected for the analysis of microwave communication systems, optical

t+ This work was supported by the U.S. Army Research Office under Contract DAAL03-87-K-0062.
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Jursmation of a surface is most accurately described by a photon arrival process, a doubly-stochastic
point process whose random rate is proportional to the intensity of the electromagnetic field integrated
over the illuminated surface. In particular, this holds for field intensities typical of received signals in
direct-detection optical systems (4-6]. As might be expected, it is convenient to analyze receivers based
on observations of the received-ficld intensity, rather than on observations of a point process driven by
this intensity. This approximation is equivalent to neglecting the quantization of energy at the pho-
todetector screen, and is increasingly inaccurate as the received optical power decreases. Second, we
have avoided the use of a Gaussian approximation of the MAI distribution. Due to low-weight signature
sequences, the MAI is additively composed of cross-correlations that are usually limited to a few chips
of coincidence, and its maximum is too small to apply central-limit-theorem arguments. As might be
expected, the derivation of the optimal hypothesis test . ud the error analysis are complicated by the
nature of the MAI distribution and would be simplified if the MAI had Gaussian statistics. Third,
we have avoided a chip-synchronous approximation on the relative delays between the users, in which
case the relative delays are integer multiples of the chip interval. Since CDMA is a form of multiuser
modulation without transmission coordination, the relative delay between any two users is uniformly
distributed on the symbol period. The relative delays affect the distribution of the MAI, which would
be simplified under the approximation of chip synchronism.

Previous work has addressed the error rate of optical CDMA receivers through the use of these
simplifying approximations. A CDMA optical receiver using a post-photodetection (electrical) matched
filter and Gold sequences was analyzed in [1). The receiver decides for the data of the user of interest
based on an observation of the optical intensity, rather than on a filtered point process driven by the
intensity. This approximation is known as “perfect optical-to-electrical conversion,” and ignores the
quantized nature of lighs. Chip-synchronous transmission was also assumed, and the number of users
was considered! large enough to model the MAI as a Gaussian random variable. Finally, the dark current
from the photodetector was ignored. A noncoherent, optical matched-filler CDMA receiver employing
prime codes was analyzed in [2]. This receiver was not limited by the speed of electronic processing as
in [1], since the matched-filter operation was performed optically. The authors assumed perfect optical-
to-electrical conversion and Gaussian-distributed MAI With these approximations the observation is a
deterministic signal in Gaussian noise, and the authors demonstrated the superior performance of prime
codes over Gold codes by a comparison of the signal-to-noise ratios.

Recently, a two-part paper explored the performance of an optical CDMA system using the optical
matched-filter receiver [7,8]. The authors computed upper and lower bounds to the single-user error rate
for those signature sequences whose periodic cross-correlations are limited to one chip of coincidence.
The analysis ignores dark current and the quantized nature of light. With these approximations the
observation is composed of the desired user’s energy in the additive, aggregate interference, and the
receiver compares this statistic to a threshold in order to decide on the transmitted information. Error
rate bounds were obtained by considering bounds on the variance of the single-user interference. Since
the bounds on the variance of each interferer were independent of the corresponding signature sequences,
the authors avoided the need to compute all interference distributions. The upper bound to the variance
was given by the chip-synchronous interference distribution, and the lower bound followed from an ideal
set of codes in which the cross-correlations were strictly less than one chip of coincidence. The error rate
bounds were compared as a fanction of the threshold, and differed by more than 2 orders of magnitude
for most thresholds and numbers of transmitters of interest. Upper bounds were also computed for the
error rate when the matched-filter receiver is preceded by an optical hard limiter. An ideal optical hard
limiter is a nonlinear device which blocks the incident light for an input intensity below a fixed minirhum
value, and otherwise limits the output intensity to this minimum value. When the threshold of the hard
limiter is set to the intensity of a single-user, the presence of the desired signal may be krown exactly.
as before. In the absence of the desired signal, the intensity of the aggregate interference is reduced
and bounded by that of a single user. In this way, an optical hard limiter reduces the error rate by
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clipping the aggregate interfexence: intensity due'to the overlap of two of more users’ waveforms. Due
to the nonlinear operation of the hard limiter, though, the output intensity is no longer the sum of
independent signals, and zn exact erro> analysis is complicatéd by this nonlinear -transformation. The
authors derived an upper bound to the error rate by overestimating the probability of interference in each
non-zero chip of the desired signature sequence. This probability was bounded by randomly selecting
one of the interferers in each non-zero “hip to represent the interference, and the remaining users were
permitted to intexfere in the next cliip position. Thus, each user could interiere repeatedly until he is
chosen to represent she interference in a particular chip. This work compared the upper bounds to the
error rate of the matched-filler CDMA receiver with and without an optical hard limiter, and showed
that many more users may be accommodated with the incorporation of the optical hard limiter. In both
upper bounds, the convolution of three of more iid uniform random variables on {0, 1] was approximated
by the Gaussian distribution.

An artifact of perfect optical-to-electrical conversion is “error-free” transmission, which occurs for a
sufficiently small population of interferers. Under this approximaztion the observable is the total received
energy in the symbol interval, which is additively composed of the desired user’s energy and that of the
interferers. Since the MAI has a maximum value which is proportional to the number of interferers, one
may completely separate the ranges of the observable under each hypothesis if the number of interferers is
small enough, and may specify an error-free threshold test. When the random nature of the photodetector
output current is retained, this effect is lost.

In summary, recent analyses of noncoherent, optical CDMA receivers have relied on the approx-
imations of perfect optical-to-electrical conversion, G ssian-distributed MAI, and chip synchronism.
The accuracy of these approximations is not known. dow much do the approximations of Gaussian-
distributed MAI and perfect optical-to-electrical conversion change the error rate? Does the approxima-
tion of chip synchronism yield an error rate that is close to the exact error rate? How small is the exact
error rate when the “error-free” condition is satisfied? ’

In this work we derive the exact error rate for the  coherent, optical matched-filter CDMA:
receiver, which decides for the data of a single user by comparing a photoelectron count to a threshold.
The results adhere fully to the semi-classical model of light and do not depend on limit theorems for
large user groups or strong recrived optical fields. The analysis is valid for arbitrary quantum efficiencies,
binary signature sequences, random gain distributions, and dark currents, and is broad in app’ tion.
In Section 2 we describe noncoherent, optical CDMA modulation and consider single-user demc  tion
based on a conditionally compound-Poisson observation. We derive the probability mass function ~MF)
of the observation under each hypothesis in Section 3, and use them to determine the optimal  .shold
and minimum probability of error. What makes the analysis. particularly interesting is the fact that
while the formal representation of the PMF for a doubly-stochastic compound Poisson count is readily
derived via conditioning [9], explicit forms are not common. Due to the particular nature of the MAI
distribution, we are able to show that the PMF may be expressed as a straightforward summation. This
expression is derived for independent and identically-distributed (iid) interferers having a distribution
that includes the cases of user asynchronism and chip synchronism. It will be seen that the error rate
expression is simplified when the distribution of the MAI is discrete. In Section 4 we take advantage of
this fact to derive arbitrarily-tight bounds on the error rate which are considerably easier to compute
than the exact error rate. In Section 5 we use the same bounding technique to derive arbitrarily-tight
bounds on the error rate when the interferers’ energies are not identical. In Section 6 we focus on
the special case of prime codes, equal energies, and unity-gain photodetectors in order to compare the
optimal threshold and minimum error rate to those obtained using the approximations discussed above.
The approximation of perfect optical-to-electrical conversion yields poor estimates of “he error rate and
optimal threshold at moderate incident optical intensities and dark currents. Further, the combined
approximations of perfect optical-to-electrical conversion and Gaussian-distributed MAI together yield




an underestimate of the optimal threshold and an error rate that is neither an upper nor a lower bound.
We also show that when prime sequences are employed, the chip-synchronous approximation leads to
an overestimate of-the error rate. The validity of these approximations for larger optical powers is also
discussed in Section 6.

2. Optical CDMA Model

During each length-T symbol interval, the jt* transmitting laser is amplitude-modulated by the
product of the data, which takes on values in {0, 1}, and an assigned signature sequence. In this work, a
signature sequence is a deterministic, {0, 1}-valued, piecewise-constant function on [0, T, and is specified
by the values that it takes on the N equal-length subintervals (chips) of [0, T]. We define P; = P as the
number of non-zero chips in the j** signature sequence, bjn as the transmitted symbol of the jth user
in the interval (nT,(n + 1)T), and ¢;(¢) as a periodic replication of the j** signature sequence. The
transmitted complex scalar field from the j laser may be expressed as

ri(t) = \/s—TIXc,-(t — 7))bjn Wilt=Tl e Wy (=) 46) | T < 4 < (n 4+ VT, (1)

where s is proportional to the optical energy per bit of the transmitting laser, v; denotes the optical
carrier frequency of the jt* user, and 9; is the phase offset of the j*h laser from the first laser. Thus
we have assumed that all users transmit with identical signal energies. This is not the case in general,
and in Section 5 we consider the more general case of unequal signal energies. The laser phase noise is
represented by a;W;(t), where a; is related to the j*h transmitting laser linewidth, B;, by a; = /27 B;.
The relative delays {r; }5(=2 are defined on [0, T') with reference to the receiver of the first user. As there
is no cooperation hetween the users, it is appropriate to model the relative delays as iid random variables
that are uniformly distributed on the interval [0, T). We shall assume that the symbol rate of each user is
the same, the optical fields of the K users add in a noncoherent fashion, and that each single-user receiver
acquires the timing of its transmitter’s symbol epochs. With ideal transmission, (1) also represents the
complex scalar field at the first receiver due to user j.

During the time interval [0, T'), the intensity of the total optical field at the receiver of the first user
is

K
() = f—g D bi—1ci(t = m)pe(0, 75) + bsoc; (¢ = 7)pe(7;, T), )
=1
where pi(a,b) is a rectangular pulse of unit height with support [a,b). We are interested in one-shot
detection of the data b1g based on an observation of a photon count in [0, T). The underlying photon
point process is driven by a filtered version of |r(2)|?, which depends on the data by only at times
{tle1(¥) = 1, 0 £ ¢t < T}. This follows from (2) and the additional fact that r; = 0. By correlating
the received point process in [0,T") with ¢;(¢), one may obtain the photon count during the support
of ¢; and may tk-r decide on the data bjg based on this count. This suboptimal processing scheme
is the bazss for the matched-filler CDMA receiver. Since the function cy(f) takes values on {0,1}, the
correlation is easily achieved at low chip rates by an electro-optic modulator, which allows light to pass
endy when c;(¢) = 1. A fiber optic tap delay line may be used to achieve the matched-filter operation at
higher chip rates. This all-optical device uses the finite propagation velocity of light to achieve a relative
delay between two optical signals by passing them through fibers of different lengths. The matched-filter
CDMA receiver has been studied in several experiments (2,3] and will be the CDMA receiver analyzed
in this work.

As seen in (1), this CDMA system employs a form of on-off modulation in which no light is trans-
mitted for a “0”, and the signature sequence is transmitted for a “1”. This receiver has been analyzed
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previously using the point process model {10]. An optical CDMA system employing a different modu-
lation scheme has also been analyzed using the point process model [11]. In that system each user is
assigned two signature sequences, one for each symbol value. The receiver matched-filters the amplified
photocurrent by the difference of the signature sequences of the desired user, and compares the output
to a threshold.

integrate on last
non-zero chip
interval

Figure 1. The optical, noncoherent matched-fliter CDMA recelver

The matched-filter CDMA receiver to be analyzed in this paper is shown in Figure 1. The
total received optical signal r(t) is coupled to a 1 x P beam splitter. Each of the outputs of the splitter are
identical copies of the input signal that are attenuated in intensity by P. The ith tap delays the received
field so that the optical signal during the i*# non-zero chip of the first signature sequence overlaps in time
with the last non-zero chip in the undelayed signal. The delayed signals are noncoherently recombined,
and the aggregate signal is-incident on a photornultiplier screen. The photomultiplier emits a random
number of secondary (output) electrons for each detected photon or thermoelectron, and the matched-
filter receiver compares the secondary electron count during the last non-zero chip interval of the first
signature sequence to a threshold in order to decide on the value of bjg. For the remainder of this work,
we denote this secondary electron count by A.

We shall employ a common photomultiplier model, in whick the intensity of primary electrons
is given by a|r(t)|> + B, where « is proportional to the quantum efficiency of the photodetector, and
@ denotes tue rate of primary electrons due to an independent dark current. The nt* primary electron
yields a random number, gn, of secondary (output) electrons, and the collection {gn} is modeled as an
iid sequence, which is independent of the primary electron point process [12]. The common probability
generating function of the random gains is denoted as G(z) = 524 2P [gn = k). It follows that A is
a conditionally compound-Poisson random variable given the integrated intensity, which we define as A,

a1l [T K )
A= F/(; a(®lelr(®)? + B dt = as bio +d + % > bj—1Rj(r) + bjoRi(my), (3)
=2

and the conditional distribution of A depends only on G(z) and A. Here Rj;;(r) and Rji(r) are the
normalized, partial cross-correlations

A N [T
Rj(r) = ?'_/o cj(t = T)er(t)dt

R N (T
Rj1(r) é E’-‘/,: ¢j(t = m)er(t)dt,

that represent the contributions to A by user j for the duration of bj_; and bjo, respectively. In (3)
d represents the portion of the primary electron count mean due to thermoelectrons. Without loss of
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Figure 2. Probability density function of a’Y -{ype random variable.

generality we set the quantum efficiency of the photodetector to unity, as this affects the distribution

of A as an attenuation in intensity. For the same reason, we neglect the combining loss in the coupler.
AN

Further, we define ¢ = sbjo = 0 under hypothesis Hg and = = s under hypothesis H;

In summary, A is conditionally compound-Poisson-distributed with conditional primary elec-
tron mean A. This conditional mean has a distribution which is shifted to the right under H;, and the
receiver decides for Hy if V exceeds some threshold. In general, a single-threshold test is not-optimum,
although sufficient conditions for the optimality of single-threshold detection have been determined 13-
15]. An important outcome of this work is to determine the threshold which minimizes the errcr rate of
the receiver. In other words, we shall find the minimum error rate detector among the class of detectors
that compares the count A to a threshold. Since A is integer-valued, it is straightforward to find this

threshold given the probability mass functions (PMFs) of A/ under each hypothesis. We find the PMFs
of AV in the next section.

3. Derivation of P[N =n | z)

In this section we derive the PMF of the secondary electron count at the integrator output for
an arbitrary photomultiplier and for chip-synchronous or completely asynchronous transmission. This
expres..on will be used in Section 4 to develop arbitrarily-tight, computationally-efficient bounds on the
cumulative distribution function of A/, and in Section 6 we will use the probability mass functions of

N in order to compare the exact error rates and optimal thresholds to those obtained using popular
approximations.

In order to concisely describe the statistics of A, we define a 4-type random variable to be a
mixed random variable having point masses at the integers {0, 1,... A} for some positive integer M, and
constant, continuous portions between these integers. For fixed M, the class of y-type random variables
is parameterized by 20 parameters, each taking values on {0, 1]. If I is a y-type random variable with
2M parameters, we define

di) & PI=4 ie{0,1,..., M)
A

¢(j) dv = PI € [v, v+ dv)) [vv+dv) C (5,j+1) je{0,1,...,M -1},

and we denote the distribution of I' as {d(0),d’1),..., d(M),c(0),...,c(M — 1)}. Figure 2 illustrates
the density of a y-type random variable.
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Each normalized, partial cross-correlation is a y-type random-variable with 20 parameters,
where M is an upper bound on -the set of total cross-correlations {Rjr + Rjk}. This follows in part
from the fact that each partial cross-correlation is piecewise-linear in the relative delay, since it is a
convolution between piecewise-constant functions.t In fact, Rjr(7) attains integer values-at the chip-
synchronous delays v € {{T, n =0,...N — 1}, and is piecewise-linear between these values. If the
common distribution of the relative delays is discrete on {®#T, n=0,...N —1}, then it is clear that
R;i(7) is +-type with c(q) = 0 Vg. It follows that under the assumption of ckip synchronism, the
distribution of the partial cross-correlations is v-type. In the asynchronous case the relative delays are
uniformly distributed on [0, T], which combined with the piecewise linearity of Rji(r) also yields a
7-type distribution. In this case, point masses arise due to constant portions of the cross-correlations.
Further, c(q) is strictly positive if and only-if the normalized, partial cross-correlation takes on both a
value strictly greater than q and a-value less than or equal to g on the set of chip-synchronous delays.
From the piecewise-linearity of R;y, it is also clear that the distribution of R;j for user asynchronism
may be computed from a knowledge of the function Ry evaluated only at the chip synchronous delays.
The M = 1, y~type distribution has been used in the analysis of optical CDMA systems employing a
subclass of OOCs (7]. This analysis, however, did not employ a point process model.

In this section we will derive the probability generating function (PGF) of A from its condi-
tional compound-Poisson nature, and show that this z-transform has a particularly straightforward and
explicit Maclaurin series expansion. The PMF is the collection of coefficients of this series, and may be

explicitly represented; as follows. By conditioning on {z, (R, Ray), ... (RKI;RKI)}: the count A/ has -

a compound Poisson distribution, whose PGF is given by (e.g., [16])

K .
E [ZN I ”:(Rzl,Rzl),---(RKl,RKI)] = ol (G- [ e# (i RatboRin}GE-1) (g)
=2

Due to the mutual independence of the pairs {(R;;, le)}f-;g, the closed form of the PGF E [z | z] may

be found by smoothing each factor in (4) individually. The jt* factor depends on the quantity b;_j R;j; +
bjole, which we describe as the P interference mixture. It is clear that the jt* interference mixture is
also of y-type with 2M parameters, and we denote its distribution as {D;(0), D;(1),..., D;(M), C;(0),..
1)}. Since the mixture coefficients {b;_1,b;0} take values in the set {0, 1}, the distribution of the inter-
ference mixtures is computed easily from the marginals of the partial and total cross-correlations. With
this notation, the closed-form expression of the power series of interest is

K M s
B [zN I :c] = (G(2)-1)(z+d) IIz{E Dj(q) exp(qF(G’(z) -1))
=2 "¢=0
(G()-1)f _ M1 s
- X G es(r5(6() VO

=0

We are interested in finding P [V = n | 2], the coefficient of z™ in the power series of (5) about z = 0.
This power series is straightforward but unnecessarily general for most signature sequence sets of interest.
For example, the number of parameters in the power series is reduced by a factor of K — 1 by assuming
that the distribution of the j* interference mixture is independent of j - that is, the contribution of
user j to the MAI is statistically indistinguishable from the other interferers. We have verified that this
is a reasonable approximation when the signature sequences come from the prime codes, and will drop
the subscript from the distribution of the interference mixtures for the sake of clarity. Also, the power

T We emphasize that in this work the signature sequences are deterministic and arbitrary. The
randomness in the cross-correlations is due solely to the relative delays.
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series of (5) is concisely written if we define C(—1)
becomes

M
B [+ | o] = -0+ { 37 Dlg)expla (G2) - 1)

q=0
_ P

C(M) £ 0. With these simplifications, (5)

K-1
&G )Z[aq - ol

There are 2M terms inside of the braces. Letting ny be the power of D(q), and mg be the power of
(C(g = 1) — C(q)] in a term of a multinomial expansion of (6), we may express the PGF of A as

M ) mgq
B[ o] = Zﬂfé{o;:‘i ‘ {HD(Q)"" [1:-{0(4) ~C(g- 1)}] }

 epl(G() = Diz+ d+ $ T Uiy + mil)
(1~ G(z)) Kima™

) o

where the outer summation is over all the indices such that E —o Mq + ng = K — 1. We find the PMF
of Vi in the following way. Suppose that we knew the coeﬂicxents of the following pcwer series

£(G(2)-1)

ZW(n,a,&)z" 2 e E a € Ry, 6§ € {0,1,2...}. (8)
n=0

Recognizing the similarity of the last line of (7) with the right hand side of (8), we could express the
PMF for N in-terms of these coefficients as

PN =nja)= E—'(—K—"—- {H D(g)" L —{C(9) - C(q - 1)}]mq}
M nglmg!

w (n, {z+d+—= Zl[m + my}}, Emz) (9)

=0

where the outer summation is over all my and ng such that the Ebfo mg + ng = K — 1. In fact,
W(n, a, §) may be calculated by a linear recursion on the integers n and §. This recursion for W is
most easily seen by re-expressing the following identity using (8)

e@(G(2)-1) e(G(2)-1) e*(G(2)-1)
———————— T G z) +
(1 = G(2))>H (1= G2+ (1-G(2)p

§€{0,1,2,...}.
We recall that G(z) is the PGF of the photomultiplier gain distribution, G(z) = 320 2/ Plg =1} It
follows from this substitution that for all n,§ € {0,1,2,...} the linear recursion for W is

n+1
(1-Plg=0Wr+1,a6+1)= Z’P[y= IWh+1l=lod+1)+Whn+1e6) (10)
I=1

For most photomultiplier models P [g = 0] = 0, which we will assume in the sequel. The initial conditions
of this recursion are also-easily extracted from the definition of W,

W0, a,8)= e~ , 5€{0,1,2,...} (11)
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and
n

k k N
W(n, a,0) = %—;—e'“ ’P[Eg,:n] , n€{0,1,...}.
k=0 1=1

The linear recursion for W(j, «,§) on n-and § permits fast, efficient computation for any arguments

n,§ > 1. Note that the second initial condition for this recursion depends on the probabilities P [Ef;l g = n] ,

for n,k € {0,1,2,...}. These probabilities require iterated convolutions of the PMF of the random gain
g1, may be precomputed and stored for small n and k, and may be approximated accurately for large

n and k. It is easy to show that P [Zf;l gl = n] has an explicit form for random gains that are
shifted-Poisson-distributed in addition to the unity-gain case.

It is helpful at this point to look at (9) in the special case of one interferer and unity-gain
photodetection. In this case (9) becomes

M
PN = n]z]:ED(j)’P [H(d+z+j—;;)= n]
i=0

M-1
+ 3 i {P[Md+2+i%) <n| -P[Md+2+(G+D5) <n|}
j=0

where II(m) is a Poisson random variable with mean m. From this equation, we see that if the interference
takes on a value corresponding to a point mass, then the contribution to the count PMF is a Poisson
PMF, as expected. If the interference takes on a value between the point masses, then the contribution
to the PMF of A is the difference between two Poisson cumulative distribution functions (CDFs).
This latter fact is due to the piecewise constant nature of the continuous portion of the interference
distribution.

We have shown that the PMF of A may be expressed as a finite summation of terms involving
the function W. We have also demonstrated that Y/ may be computed by a linear recursion on its integer
arguments. These expressions are valid when the distribution of the normalized, partial cross-correlations
is y-type (Figure 2) such as in the cases of user asynchronism and chip-synchronism. It should be pointed
out that the number of terms in the PMF summation (9) is exponential in the number of interferers, and
may be prohibitively large for large K. In the next section we show that by modifying the distribution
of the interference mixtures, we may use a special case of (9) to express arbitrarily tight bounds on the
PMF as a summation that is bilinear in the number of interferers K — 1 and the parameter M.

4. Arbitrarily Tight Bounds on P[V < n | z]

Cornputationally-efficient bounds must reduce the complexity of (9) in both the multinomial
summation and the .computation of ¥, while controlling the loss of accuracy by a parameter of our
selection. In this section we show that by quantizing the interference mixtures, we achieve all three
objectives. The intuition behind the bounds is demonstrated in the following special case. Suppose that
each interference mixture has a discrete distribution on the set {0, 21;, %, ...y M} containing QM + 1
elements. In:this case ‘the conditional mean A takes on (K — 1)QM + 1 possible values. When A
has . diserete distribution, C(5) = 0 V3, and the conditional CDF of A given z and all partial cross-
correlations is given-by (9) as

PN < n e (B, B .. (Bicr, Ricr)] = YW A,0) (12)
t=0




Since the right-hand side depends only on an initial condition for W, the assumption of a discrete
distribution on A eliminates the need to compute the linear recursion for W. Also, computation is
reduced substantially by noting that the conditional CDF of A depends on {R

the conditional mean A = 2z +d+ & Ef—.—z bj—1Rj1 + bjole. This is not true for the exact interference

distribution, in which case the conditional CDF is also dependent on § = Z]Kﬂ mj, the total number of
interference mixtures that take on non-integer values. The effect of § on the exact PMF may be seen in
(9). This observation allows us to uncondition (12) over the distribution of the (X — 1)QM + 1-valued
conditional primary electron mean A, rather than the joint distribution of the interference mixtures,
which would require (2M + l)K -1 terms. Quite simply, a discrete distribution for the interference
mixtures yields a CDF for A that is linear rather than exponential in the number of interferers.

But how do we obtain arbitrarily-tight bounds on the exact conditional error rate P [ < n| z]
that use a discrete interference mixture distribution? Suppose we quantize each term of the interference
mixture b1 Rj1 + bjof%jl with a step size of %, Q € {1,2,...}, and round-up or round-down to form
bounds on the interference mixtures. That is, we form A, Ay from (3)

K
3 1 1, 0z
A= — jm1— 1. 0 j
1=z+d+ P;:z:b’ 1519 +bjo5 1 Q]

and

K
1 1 .
Au=z+d+ = b =[QRj1] + bjo=[QRj],
u Pj=2 ] lQrQ Jl] JoQI'Q Jl‘]

where | R| ([R])-is the greatest (least) integer function of R. Although it is obvious that A} < A < Ay,
it is not clear that we may form bounds on the secondary electron count CDF by substituting A; and
Ay for A. A subtle point is raised by considering the form of A/

11(A)

N =3 g (13)

p=1

where II(A) is a conditionally-Poisson count with conditional mean A. Since the random gains gp are
non-negative, A/ increases with the primary electron count, II. It is easy to show that A; < A implies
PII(A) < n] < P(A)) < n] for all n [17], yet it is not clear from (13) that corresponding bounds
on the CDF of A follow from this fact. In the lemma below we show that we may achieve bounds on
PN < n]z] by using the distributions of A; and Ay. This is shown by first considering the case when
A is deterministic.

Lemma 1. Let II(a) be a Poisson random variable with mean a, and let M(a) = Zg_ﬁ) gk,

where {gr} is a collection of nonnegative i.i.d. random variables that is independent of I(a). Let
0 < &’ < a. Then

PN(a) <n<PN@)<n], n>0.
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Proof.

PN(a) <nl=) Pl(a) =k Plg1+...+ g < 1)
k=0

= S (PI(e) S H - P0(a) < k=) Plos +... 4 g5 <l
k=0 X

=) Pll(a) <K {Plor+...+ g Sn] - Plor+ ...+ grg1 < 1}
k=0

o0
<SP K {Pla+...+ gt Sl =Plor+ ...+ gr1 < nl}
k=0

=P [Md') < 1]

The inequality follows from the fact that the Poisson CDF is a decreasing function of the mean. This
lemma extends easily to the case when II(A) is conditionally Poisson with conditional mean A. By
conditioning on A, we have

PIN(A) Sn]A] S PN(A) S niA]

from Lemma 1 since both A and A are known under this conditioning. The desired result follows by
smoothing with respect to the distribution of A. Lemma 1 allows us to compute an upper bound of the
CDF of A under each hypothesis by averaging the right hand side of

PWN@A)<n I z,A, A < ’P[N(Al) < nlz)A:Al]

over the (K — 1)QM + 1-valued distribution of A;. The tightness and complexity of the upper (and
lower) bounds are controlled by the quantization step size L. It is obvious by comparing the number of
terms per point of the CDF to those of the bounds that even for moderate numbers of transmitters and
fine quantization; the bounds require significantly less computation.

5. Arbitrarily-Tight Error Rate Bounds for Unequal Energies

Using Lemma 1, we may form bounds on the count CDF under each hypothesis by developing
bounds on the underlying conditional mean. In the case of equal energies, we may achieve this by
uniformly quantizing each interference mixture, and as the quantization step size decreases, the accuracy
of the bounds improves. In this section we show that the same technique may be applied to the case of
unequal energies.

We may express the conditional mean as
1 & .
A=z+d+ }—D' ESj[bj_lel + bjOleL
j=2
where 3; is the energy per “1” for user j and z = s1b10. In this case we define A, Ay as

K
1, _s; b, 85
A=z+d+ E :bj-l—LQ‘—J'RJ'lJ + bJ'O—l-Q_J'RJ'lJ
j=2 Q P Q P
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K
1
Au=z+d+ Zb,-_l R,l'] + bJo I'Q R,ﬂ

=2

Note that the quantity ’7} appears inside each quantizer. Unlike the equal-energy case, we cannot form
A; and Ay by quantizing the partial cross-correlations directly. Instead, each must be scaled by the
appropriate energy s;. However, it is clear that A; < A < Ay, and we may form bounds on the count

CDF using quantization and Lemma 1. The quantized mean may take on at most (M Q mJaX ;ﬁ- + I)K"1 -
(K —1) values, where M is the maximum for the common interference mixture. The distributions of A;
and Ay are obviously discrete, and may be computed exactly. More importantly, we may uncondition
(12) by the distribution of Ay to obtain a lower bound to the count CDF under each hypothesis. The
bounds on the CDF of A are most easily seen from (9) with the following abuse of notation. Let
M = Q max(Au — (z + d)), and let D(j) = [Au =z+d+ 6-] denote the distribution of A% in (9).

Since max(Ay — (z + d)) is a multiple of 1/Q due to quantization, M is an integer. The idea is to
consider Ay as the quantized interference due to one user having an interference mixture distribution
{D(0),... D(M)}. To complete this analogy, we must set K — 1 = 1 in (9). The corresponding CDF
bound is

P[N<n|z]>ZED (W, :c+d+-— 0)

1—0 j=0

Note that we have set s = 1 in (9), since the interference energies are incorporated in the quantization.
An upper bound to P [A < n | z] follows from A; in the same way. It is helpful to note that for unity-gain
photodetection the above bound becomes

'P[N<n|x]>ZD(J)'P[H(:c+d+—-) <n]

Jj=0

where II(m) is a Poisson random variable with mean m. This follows from the conditional Poisson
nature of A/, when driven by a conditional mean with a discrete distribution.

6. Example: Equal Energies, Prime Sequences and PIN Photodiodes

In order to compare the exact error rate to the approximations discussed earlier, we must
first compute the y-type distribution (D(0), ..., D(M), C(0),...,C(M - 1)), which is used in (9). This
distribution may be computed once the signature sequence set and the distribution of the relative delays
are specified. In this section we focus on the set of prime sequences [18] in the user-asynchronous and
chip-synchronous cases. We shall also assume equal energies for all users.

Since the normalized cross-correlations of prime sequences are bounded above by M = 2,
we must compute {D(Q), D(1), D(2), C(0), C(1)} for the chip-synchronous and asynchronous cases {18].
For the prime sequences frem GF(31), we have found that the average distributions for the interference
mixtures are given to two significant-digits as

D(0) D(1) D(2) C(0) C(1)

chip-synchronous users = .57 .36 .07 .00 .00
asynchronous users = A4 22 .01 24 .09

Table 1. Average distributions of the interferénce mixtures.
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We have verified that the MAI for prime sequences is well-modeled by a sum of iid random
variables. In particular, the mean, variance, and third central moment using the avérage distribution
for each interferer were identical to the exact MAI moments, while the fourth central moments diflered
by less than .004% for 29 interferers. Further, the average distribution of the GF(31) prime sequences
did not differ significantly from those of the GF(11) and GF(17) prime sequences. For this reason we
shall use the distribution in Table 1 for all calculations. It should be pointed out that. bounds may be
achieved by considering best and worst case (common) interference distributions, as was done in [8].

chip-synchronous

Probability
of Error

[
<,

asynchronous users

107 . - - - y T
7 8 9 Number of Users 12 13 14

Figure 3. Comparison of the Minimum Error.Rates For Asynchronous
Users and the Chip-Synchronous Approximation

In Figure 3 we have plotted the minimum error probability of the matched-filter CDMA
receiver for the chip-synchronous approximation and for completely asynchronous transmission. We
have used the weight 17 and length 289 prime sequences from GF(17), an optical energy per user of
s=1000 photons per bit, and a dark current mean of d=50 thermoelectrons per bit. For a single-user
transmission rate of R Gigabits per second, these numbers correspond to a peak received single-user
power of R uyW and a photodetector dark current of approximately 10 - R nA. From Figure 3 we see
that the chip-synchronous approximation upper-bounds the error rate in the asynchronous case by at
least one order of magnitude. The error rates are ordered in this way due exclusively to the differences
of the distributions of the interference mixtures. From Table 1, it may be shown that the means of the
interference mixtures are identical in both cases, while the ordering of the variances coincides with that
of the error rates. Thus the MAI has identical means under these distributions, and second moments
whose ordering coincides with that of the error rates. In the unily-gain case it is easy to show that
E[NV|#] = A, and Var(WV]z) = A —(A)? + A2, which implies that under each hypothesis the mean
of A is unchanged by the approximation-of chip synchronism, yet the variance of A/ increases as we
proceed from complete asynchronism to chip synchronism. From the ordering of the minimum error rate
curves in Figure 3, we see that an increase in- the variance of A under each hypothesis results in an
increased error rate as the conditional means of A/ are fixed.

In {7] it was shown by example that the variance of the interference mixture increases under
chip synchronism for optical orthogonal codes that are bounded by one chip of interference. We will
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now show that an interference mixture bj_1 R;{ + bjoR;j1 has a larger variance under chip synchronism
than asynchronism for arbitrary, deterministic signature sequences. Due to the independence of the
users, this implies that the MAI has a larger variance under chip synchronism. We will prove this in
two steps: we shall show first that each cross-cotrelation Rjy, f%jl, and Rj + R,-l has a larger variance
under chip-synchronism, and then we shall show that the same is true for the interference mixture.

Lemma 2. The variance of the MAI is greater under chip synchronism than complete
asynchronism. -

Proof. Let R(r) denote any of the above cross-correlations. Then the distribution of R(r)
is y~type, and R(7) has an upper bound of, say, M. R(r) is a piecewise linear, continuous function
of the relative delay 7 € [0, 7). In fact, R(r) is linear between its chip-synchronous values. Due to the
uniform distribution on the delay, and the piecewise linearity of R(r), it is easy to show that the mean
of R(r) is the same under chip synchronism or asynchronism. (The same is true for the interference
mixture by similar arguments.) Thus, it is sufficient to show that the second moment of R(r) is greater
under chip synchronism than complete asynchronism.

The distribution of R(7) under complete asynchronism has the form (d(0),... d(M),c(0),...,
c(M = 1)), where c(j) represents a piecewise constant portion between j and j + 1. Equivalently, this
distribution may be described by (d(0),...,d(M), {umk}, for m,k = 0,... M and m < k), where
F%Ei'f is the height of a square pulse on the interval (m, k). These square pulses overlap, and the sum
of all r:ﬂ’j;[ such that (4,7 + 1) C (m,k) is equal to ¢(j). The value u,; is equal to the fraction
of consecutive values of {m,k} or {k,m} in the sequence of chip synchronous values of R(r). We
introduce this decomposition for the following two reasons. First, the second moment of R(r) is linear
in each of the u,x. Second, the probability mass on the interval (m, k) represented by u,,z under user
-asynchronism vanishes to the endpoints m and 'k under chip synchronism in such a way as the center of
mass is conserved on the interval (m, k). The latter fact is the reason that the means of R(7) coincide
under chip synchronism and complete asynchronism. Because of these two facts, it is sufficient to show
that under the constraint of a constant mean, the uniform distribution on (m, k) has a smaller second
moment than the discrete distribution on {m, k}. This condition is easy to show, and it follows that
the variance of-any cross-correlation Rj, le ,or Rjy + .i?jl between deterministic sequences is greater
under chip synchronism than asynchronism.

Now we would like to show that the interference mixture b;-1 Rj; +bjof2,'1 has a higher vari-
ance under chip synchronism. Since the means of this random variable coincide under chip synchronism
and complete asynchronism, it is sufficient to show that the second moment of the interference mixture
is larger under chip synchronism. But this follows from the same fact for the cross-correlations, since
the distribution of the interference mixture is a convex combination of the marginals of Ry, R,l, and
RJI + R]l

Since the variance of each interference mixture increases under chip synchronism, the same
is true for the MALuw

Direct-detection communication systems often require large réceived optical energies to achieve
an acceptable error rate. Therefore, we are interested in the asymptotic distribution of M as s grows
without bound. In the-simplest case when A is deterministic (A is compound-Poisson) it is well-known
that a normalized version of A/ converges in distribution to a Gaussian random variable. The asymptotic
distribution has also.been established for random A and unity-gain photodetection [19,20]. This result
requu'es that A - ooand opy >0, and shows that the asymptotic-distribution depends on the limit

of p & —A- If limp = 0, then-the normahzed count converges in distribution to a standard Gaussian

random variable. If limp = oo, then the normalized count converges in distribution to it lim —;,ZA.
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Finally, if 0 < limp < oo, then the normalized count converges in distribution to an independent

mixture of A and a standard Gaussian. This result has also been generalized to include the case of
photomultiplication [21]. We state this result below.

Lemma 3. Let IT be a conditionally Poisson random variable with mean A when conditioned
on A, and let V = Zgﬂ) gk, where {g;} are iid positive random variables with finite mean and variance.

2 -
Suppose that {g;} are independent of A, ¢4 > 0, and deﬁne‘ P 4 ZAL Then if A = oo the normalized

random variable A/ = N;"-—AT’V- converges in distribution as follows. If limp = 0, then N, converges to

a standard Gaussian random variable. If limp = oo, then N , then converges to A. Finally, if limp is
finite and non-zero, then A/ converges to a mixture of the two limiting cases above.g

Lemma 3 is most easily shown by taking the limit of the characteristic function of /. In the
matched-filter CDMA receiver, A is proportional to s, and A, p — co. Therefore, the rormalized count
converges in distribution to the scaled conditional mean A as s — co. This asymptotic result is more
commonly known as “perfect optical-to-electrical conversion”. It is important-to note that Ais not a
Gaussian random variable, as it is composed of a finite number of bounded, mixed random variables. It
follows from Lemma 3 that the normalized count will not converge to a Gaussian random variable as
g — o0, in contrast to the case when A is deterministic. In fact, it will be shown in the numerical results
that the observed count A/ is poorly approximated by a signal in additive Gaussian noise.

In Figure 4 we compare the exact minimum error rate of the CDMA matched-filter receiver
to those obtained with simplifying approximations. For these. calculations we have chosen the signature
sequences from the GF(11) prime codes, which have a length of 121 chips and a weight of 11 chips. We
have also assumed that the average number of thermoelectrons is much less than-the average number
of photoelectrons. As expected, the exact minimum error rate increases with the number of users, and
is a decreasing function of the single-user power. We see that the error rate curves seem to converge
to that predicted by Lemma 3 uS s increases. However, the asymptotic curve is a lower bound to the
exact error rate by an order of magnitude for optical powers less than 10,000 photons per bit. Also
note that each exact error rate curve (constant s) approaches the asymptotic curve corresponding to
Gaussian-distributed MAI as the number of users, K, increases. This fact may also be justified by
Lemma 3. However, in this case both A and o3 are proportional to (K —~ 1), and the limiting value of p
is finite. We conclude from Lemma 3-that the asymptotic distribution of A/ for large K is a mixture of
the random variable A and an independent Gaussian random variable. In addition, A converges in law
to the Gaussian distribution by the central limit theorem-as the number of users increases. Therefore,
for fixed single-user power and"increasing number of users, & converges weakly to a Gaussian random
variable. This fact is illustrated in Figure 4, where the asymptotic error rate curve approaches the error
rate curve for the approximation of Gaussian-distributed MAIL However, we note that the error rate is
unacceptably high in the region in which the Gaussian-distributed MAI approximation is tight. It is
also evident from Figure 4 that, in general, the Gaussian-distributed MAI approximation yields a poor
estimate of the system performance:

Using the numerical results in Figure 4 we may also address the “error-free” condition, an
artifact of perfect optical-to-electrical conversion. Under this approximation, the observation is additively
composed of the desired user’s energy and the MAI. Since the desired signal is on-off keying, the “error-
free” condition exists when the signal peak is greater than the maximum of the MAL Since the prime
codes have a cross-correlation bound of 2, this condition occurs when the number of interferers is less
than half the weight of the sequences. Therefore, the “error-free” condition should occur for less than
6 users in Figure 4. The exact error rate curves in this figure indicate that “error-free” performance
is approximated for incident optical energies exceeding 10,000 photons per bit - the error rate for K=6
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at this energy is roughly 10~1¢, At optical energies less than 10,000 photons per bit, the “error-free”
phenomenon is not observed.

An important byproduct of this analysis is the optimal threshold function for the matched-
filter CDMA receiver. In Figure 5 we have plotted the optimal thresholds for those error rate curves
plotted in Figure 4. Each threshold function is normalized by the respective signal energy per bit. As the
incident optical energy per bit increases, the normalized optimal threshold increases to unity, which is
the curve corresponding to the asymptotically optimal test. Note that the combined approximations of
Gaussian-distributed MAI and perfect optical-to-electrical conversion yield a threshold that significantly
underestimates the exact optimal threshold for moderate and large received optical energies. For this
region the high-energy test (using the exact MAI distribution) yields a more accurate estimate of the
optimal threshold. This fact further illustrates that the observable is not well-modeled as a Gaussian
random variable for any optical power. Optimal thresholds for large incident optical energies are not
plotted for the “error-free” region because they could not be reliably determined due to the vanishing
error rate.

7. Conclusions

In this paper e have presented a semi-classical analysis of the error rate for a noncoherent,
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Figure 5. Optimal thresholds for the matched-filter CDMA receiver

matched-filter CDMA receiver in the optical channel. The error rate expression is valid for a common
photomultiplier model, arbitrary signature sequences and equal energies among the users. In this paper
we also developed arbitrarily-tight bounds on the error rate for unequal energies. In the case when
the signal energies coincide, these bounding expressions are considerably easier to compute than the
exact error rate. The exact error rates and optimal thresholds were compared to those obtained through
various approximations for the special case of prime sequences and unity gain photcdiodes, and the
accuracy of these approximations was addressed for various received optical energies and numbers of
transmitters. It was demonstrated that the chip-synchronous approximation yielded minimum error
rates that upper-bounded the-exact error rates, that the approximation of perfect optical-to-electrical
conversion was accurate only when the single-user optical energy per bit was much larger than 10000
photons per bit, and that the combined approximations of perfect optical-to-electrical conversion and
Gaussian-distributed MAI were appropriate only for numbers of transmitters that yielded unacceptable
error rates for a moderate number of chips per bit.
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